Advertisement

Influence of Cell Anisotropy and Relative Density on Compressive Deformation Responses of LM13-Cenosphere Hybrid Foam

  • Shyam Birla
  • D. P. Mondal
  • S. Das
  • Anurag Kulshrestha
  • S. L. Ahirwar
  • A. N. Ch. Venkat
  • Rajeev Kumar
Article
  • 58 Downloads

Abstract

This article deals with closed-cell aluminum alloy LM13-cenosphere hybrid foams (ACHFs) with cell anisotropy prepared through stir casing technique. The compressive deformation behavior of hybrid foams in both transverse and longitudinal directions was measured at a strain rate of 0.01/s. The hybrid foam loaded in longitudinal direction (LD) shows higher plastic collapse stress than that in transverse direction (TD). The stress drop ratio is also observed to be higher in the LD. The plastic collapse stress and energy absorption capacity of ACHFs follow the power law relationship with relative density in both the directions. The plateau stress is higher in case of LD and densification strains are marginally higher in case of LD than that in TD.

Keywords

Al-cenosphere hybrid foam cell anisotropy compressive deformation relative density 

References

  1. 1.
    J. Banhart, Manufacture, Characterisation and Application of Cellular Metals and Metal foams, Prog. Mater. Sci., 2001, 46, p 559–632CrossRefGoogle Scholar
  2. 2.
    M.F. Ashby, T. Evans, N.A. Fleck, J. Hutchinson, H. Wadley, and L. Gibson, Metal Foams: A Design Guide, Elsevier, Amsterdam, 2000Google Scholar
  3. 3.
    D.P. Mondal, N. Jha, B. Gull, S. Das, and A. Badkul, Microarchitecture and Compressive Deformation Behaviour of Al-alloy (LM13)–Cenosphere Hybrid Al-Foam Prepared Using CaCO3 as Foaming Agent, Mater. Sci. Eng. A, 2013, 560, p 601–610CrossRefGoogle Scholar
  4. 4.
    D.P. Mondal, M. Patel, S. Das, A.K. Jha, H. Jain, G. Gupta et al., Titanium Foam with Coarser Cell Size and Wide Range of Porosity Using Different Types of Evaporative Space Holders Through Powder Metallurgy Route, Mater. Des., 2014, 63, p 89–99CrossRefGoogle Scholar
  5. 5.
    S. Birla, D.P. Mondal, S. Das, A. Khare, and J.P. Singh, Effect of Cenosphere Particle Size and Relative Density on the Compressive Deformation Behavior of Aluminum-Cenosphere Hybrid Foam, Mater. Des., 2017, 117, p 168–177CrossRefGoogle Scholar
  6. 6.
    D.P. Mondal, J.D. Majumder, N. Jha, A. Badkul, S. Das, and A. Patel, Titanium-Cenosphere Syntactic Foam Made Through Powder Metallurgy Route, Mater. Des., 2012, 34, p 82–89CrossRefGoogle Scholar
  7. 7.
    A. Rabiei and M. Garcia-Avila, Effect of Various Parameters on Properties of Composite Steel Foams Under Variety of Loading Rates, Mater. Sci. Eng. A, 2013, 564, p 539–547CrossRefGoogle Scholar
  8. 8.
    A. Daoud, Effect of Strain Rate on Compressive Properties of Novel Zn12Al Based Composite Foams Containing Hybrid Pores, Mater. Sci. Eng. A, 2009, 525, p 7–17CrossRefGoogle Scholar
  9. 9.
    K. Kitazono, Y. Kikuchi, E. Sato, and K. Kuribayashi, Anisotropic Compressive Behavior of Al-Mg Alloy Foams Manufactured Through Accumulative Roll-Bonding Process, Mater. Lett., 2007, 61, p 1771–1774CrossRefGoogle Scholar
  10. 10.
    P.K. Rohatgi, A. Daoud, B.F. Schultz, and T. Puri, Microstructure and Mechanical Behavior of Die Casting AZ91D-Fly Ash Cenosphere Composites, Compos. Part A Appl. Sci. Manuf., 2009, 40, p 883–896CrossRefGoogle Scholar
  11. 11.
    L. Licitra, D.D. Luong, O.M. Strbik Iii, and N. Gupta, Dynamic Properties of Alumina Hollow Particle Filled Aluminum Alloy A356 Matrix Syntactic Foams, Mater. Des., 2015, 66, p 504–515CrossRefGoogle Scholar
  12. 12.
    J. Banhart, Light-Metal Foams—History of Innovation and Technological Challenges, Adv. Eng. Mater., 2013, 15, p 82–111CrossRefGoogle Scholar
  13. 13.
    S. Birla, D.P. Mondal, S. Das, N. Prasanth, A.K. Jha, and ANCh Venkat, Compressive Deformation Behavior of Highly Porous AA2014-Cenosphere Closed Cell Hybrid Foam Prepared Using CaH2 as Foaming Agent: Comparison with Aluminum Foam and Syntactic Foam, Trans. Indian Inst. Met., 2017, 70(7), p 1827–1840CrossRefGoogle Scholar
  14. 14.
    S. Birla, D.P. Mondal, S. Das, D.K. Kashyap, and ANCh Venkat, Effect of Cenosphere Content on the Compressive Deformation Behaviour of Aluminum-Cenosphere Hybrid Foam, Mater. Sci. Eng. A, 2017, 685, p 213–226CrossRefGoogle Scholar
  15. 15.
    A. Daoud, Compressive Response and Energy Absorption of Foamed A359-Al2O3 Particle Composites, J. Alloys Compd., 2009, 486, p 597–605CrossRefGoogle Scholar
  16. 16.
    D.K. Rajak, L.A. Kumaraswamidhas, S. Das, and S. Senthil Kumaran, Characterization and Analysis of Compression Load Behaviour of Aluminium Alloy Foam Under the Diverse Strain Rate, J. Alloys Compd., 2016, 656, p 218–225CrossRefGoogle Scholar
  17. 17.
    D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load, J. Mater. Eng. Perform., 2018, 27, p 1936–1944.  https://doi.org/10.1007/s11665-018-3241-x CrossRefGoogle Scholar
  18. 18.
    Z.G. Xu, J.W. Fu, T.J. Luo, and Y.S. Yang, Effects of Cell Size on Quasi-Static Compressive Properties of Mg Alloy Foams, Mater. Des., 2012, 34, p 40–44CrossRefGoogle Scholar
  19. 19.
    N.V. Ravi Kumar, N. Ramachandra Rao, and A.A. Gokhale, Effect of SiC Particle Content on Foaming and Mechanical Properties of Remelted and Diluted A356/Sic Composite, Mater. Sci. Eng. A, 2014, 598, p 343–349CrossRefGoogle Scholar
  20. 20.
    D.K. Rajak, L.A. Kumaraswamidhas, and S. Das, Investigation and Characterisation of Aluminium Alloy Foams With TiH2 as a Foaming Agent, Mater. Sci. Technol., 2016, 32, p 1338–1345CrossRefGoogle Scholar
  21. 21.
    I.N. Orbulov and J. Ginsztler, Compressive Characteristics of Metal Matrix Syntactic Foams, Compos Part A Appl. Sci. Manuf., 2012, 43, p 553–561CrossRefGoogle Scholar
  22. 22.
    M. Taherishargh, E. Linul, S. Broxtermann, and T. Fiedler, The Mechanical Properties of Expanded Perlite-Aluminium Syntactic Foam at Elevated Temperatures, J. Alloys Compd., 2018, 737, p 590–596CrossRefGoogle Scholar
  23. 23.
    E. Linul, N. Movahedi, and L. Marsavina, The Temperature and Anisotropy Effect on Compressive Behavior of Cylindrical Closed-Cell Aluminum-Alloy Foams, J. Alloys Compd., 2018, 740, p 1172–1179CrossRefGoogle Scholar
  24. 24.
    I.N. Orbulov, Compressive Properties of Aluminium Matrix Syntactic Foams, Mater. Sci. Eng. A, 2012, 555, p 52–56CrossRefGoogle Scholar
  25. 25.
    Y. Mu, G. Yao, and H. Luo, Effect of Cell Shape Anisotropy on the Compressive Behavior of Closed-Cell Aluminum Foams, Mater. Des., 2010, 31, p 1567–1569CrossRefGoogle Scholar
  26. 26.
    Q. Fang, J. Zhang, Y. Zhang, H. Wu, and Z. Gong, A 3D Mesoscopic Model for the Closed-Cell Metallic Foams Subjected to Static and Dynamic Loadings, Int. J. Impact Eng., 2015, 82, p 103–112CrossRefGoogle Scholar
  27. 27.
    X. Xia, X. Chen, Z. Zhang, X. Chen, W. Zhao, and B. Liao, Effects of Porosity and Pore Size on the Compressive Properties of Closed-Cell Mg Alloy Foam, J. Magnes. Alloys, 2013, 1, p 330–335CrossRefGoogle Scholar
  28. 28.
    W.-Y. Jang, W.-Y. Hsieh, C.-C. Miao, and Y.-C. Yen, Microstructure and Mechanical Properties of ALPORAS Closed-Cell Aluminium Foam, Mater. Charact., 2015, 107, p 228–238CrossRefGoogle Scholar
  29. 29.
    D.P. Mondal, M.D. Goel, N. Bagde, N. Jha, S. Sahu, and A.K. Barnwal, Closed Cell ZA27-SiC Foam Made Through Stir-Casting Technique, Mater. Des., 2014, 57, p 315–324CrossRefGoogle Scholar
  30. 30.
    M.D. Goel, D.P. Mondal, M.S. Yadav, and S.K. Gupta, Effect of Strain Rate and Relative Density on Compressive Deformation Behavior of Aluminum Cenosphere Syntactic Foam, Mater. Sci. Eng. A, 2014, 590, p 406–415CrossRefGoogle Scholar
  31. 31.
    Y. Mu, G. Yao, L. Liang, H. Luo, and G. Zu, Deformation Mechanisms of Closed-Cell Aluminum Foam in Compression, Scr. Mater., 2010, 63, p 629–632CrossRefGoogle Scholar
  32. 32.
    C. Park and S.R. Nutt, Anisotropy and Strain Localization in Steel Foam, Mater. Sci. Eng. A, 2001, 299, p 68–74CrossRefGoogle Scholar
  33. 33.
    L.J. Gibson and M.F. Ashby, Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, 1999Google Scholar
  34. 34.
    T.G. Nieh, K. Higashi, and J. Wadsworth, Effect of Cell Morphology on the Compressive Properties of Open-Cell Aluminum Foams, Mater. Sci. Eng. A, 2000, 283, p 105–110CrossRefGoogle Scholar
  35. 35.
    E. Amsterdam, H. Van Hoorn, J.T.M. De Hosson, and P.R. Onck, The Influence of Cell Shape Anisotropy on the Tensile Behavior of Open Cell Aluminum Foam, Adv. Eng. Mater., 2008, 10, p 877–881CrossRefGoogle Scholar
  36. 36.
    X. Badiche, S. Forest, T. Guibert, Y. Bienvenu, J.D. Bartout, and P. Ienny, Mechanical Properties and Non-Homogeneous Deformation of Open-Cell Nickel Foams: Application of the Mechanics of Cellular Solids and of Porous Materials, Mater. Sci. Eng. A, 2000, 289, p 276–288CrossRefGoogle Scholar
  37. 37.
    N. Chand, P. Sharma, and M. Fahim, Correlation of Mechanical and Tribological Properties of Organosilane Modified Cenosphere Filled High Density Polyethylene, Mater. Sci. Eng. A, 2010, 527, p 5873–5878CrossRefGoogle Scholar
  38. 38.
    D.P. Mondal, S. Das, N. Ramakrishnan, and K. Uday Bhasker, Cenosphere Filled Aluminum Syntactic Foam Made Through Stir-Casting Technique, Compos. Part A: Appl. Sci. Manuf., 2009, 40, p 279–288CrossRefGoogle Scholar
  39. 39.
    D.P. Mondal, N. Jha, A. Badkul, B. Gul, S. Rathod, and S. Das, Effect of Age Hardening on Compressive Deformation Behavior of Al-Alloy (LM13)–Cenosphere Hybrid Foam Prepared Using CaCo3 as a Foaming Agent, J. Mater. Res., 2013, 28, p 2528–2538CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Shyam Birla
    • 1
    • 2
  • D. P. Mondal
    • 1
    • 2
  • S. Das
    • 1
    • 2
  • Anurag Kulshrestha
    • 3
  • S. L. Ahirwar
    • 4
  • A. N. Ch. Venkat
    • 2
  • Rajeev Kumar
    • 2
  1. 1.Academy of Scientific and Innovative Research (AcSIR)ChennaiIndia
  2. 2.CSIR-Advanced Materials and Processes Research InstituteBhopalIndia
  3. 3.University Institute of TechnologyBarkatullah UniversityBhopalIndia
  4. 4.University Institute of TechnologyRajeev Gandhi Technical UniversityBhopalIndia

Personalised recommendations