Journal of Materials Engineering and Performance

, Volume 27, Issue 11, pp 5938–5946 | Cite as

Micro-crack Pinning and Interfacial Fracture in Mixed Metal Oxide Reinforced Epoxy Nanocomposite

  • Ramakrishna VasireddiEmail author
  • D. Roy Mahapatra


The effects of mixed metal oxides (CexZr1−xO2) nanoparticle dispersion on the mechanical properties and fracture mechanisms of epoxy polymer matrix and its composite with glass fiber system are reported in this paper. CexZr1−xO2 nanoparticles are synthesized using sol–gel method, and its crystallinity is optimized. Epoxy nanocomposites are synthesized by a dispersion technique, and the compressive properties are optimized. The glass transition temperature has been improved. Epoxy with 5 wt.% of Ce0.75Zr0.25O2 shows optimal results with an increase of 17.4% in compressive modulus, and an increase of 23.4% in compressive strength with respect to those of neat epoxy. This improvement attributes to higher strength of shearing of polymer during the fracture of the nanoparticle interface. Micro-crack kinks at the interfaces can further delay fracture under compression. E-glass fabric-reinforced 5 wt.% Ce0.75Zr0.25O2–epoxy nanocomposite also shows improvement in the mechanical properties via nanoscale interface with fibers. This type of ceramic nanocomposites has useful applications in thermal/electrical insulations besides improving the compressive/buckling properties.


ceramic glass fabric interface fracture micro-crack nanoparticles nanocomposite oxide zirconia 



Authors acknowledge the financial support under the ACECOST phase-III program of the Aeronautics Research and Development Board to carry out this research.


  1. 1.
    I.A. Al Ajaj, M.M. Abd, and H.I. Jaffer, Mechanical Properties of Micro and Nano TiO2/Epoxy Composites, IJMMME, 2013, 2, p 2320–4060Google Scholar
  2. 2.
    B. Bittmann, F. Haupert, and A.K. Schlarb, Preparation of TiO2/Epoxy Nanocomposites by Ultrasonic Dispersion and Their Structure Property Relationship, Ultrason. Sonochem., 2011, 18, p 120–126CrossRefGoogle Scholar
  3. 3.
    Y. Zheng, Y. Zheng, and R. Ning, Effects of Nanoparticles SiO2 on the Performance of Nanocomposites, Mater. Lett., 2013, 57, p 2940–2944CrossRefGoogle Scholar
  4. 4.
    A. Omrani, L.C. Simon, and A. Rostami, The Effects of Alumina Nanoparticle on the Properties of an Epoxy Resin System, Mater. Chem. Phys., 2009, 114, p 145–150CrossRefGoogle Scholar
  5. 5.
    T.R. Prabhu, S. Basavarajappa, R.B. Santhosh, and S.M. Ashwini, Tribological and Mechanical Behaviour of Dual-Particle (Nanoclay and CaSiO3)-Reinforced E-Glass-Reinforced Epoxy Nanocomposites, Bull. Mater. Sci., 2017, 40, p 107–116CrossRefGoogle Scholar
  6. 6.
    V. Arrighi, I.J. McEwen, H. Qian, and M.B. Serrano Prieto, The Glass Transition and Interfacial Layer in Styrene-Butadiene Rubber Containing Silica Nanofiller, Polymer, 2003, 44, p 6259–6266CrossRefGoogle Scholar
  7. 7.
    Z. Guo, K. Lei, Y. Li, H.W. Ng, S. Prikhodko, and H.T. Hahn, Fabrication and Characterization of Iron Oxide Nanoparticles Reinforced Vinyl-Ester Resin Nanocomposites, Compos. Sci. Technol., 2008, 68, p 1513–1520CrossRefGoogle Scholar
  8. 8.
    Z. Guo, T. Pereira, O. Choi, Y. Wang, and H.T. Hahn, Surface Functionalized Alumina Nanoparticle Filled Polymeric Nanocomposites with Enhanced Mechanical Properties, J. Mater. Chem., 2006, 16, p 2800–2808CrossRefGoogle Scholar
  9. 9.
    H.J. Kim, D.H. Jung, I.H. Jung, J.I. Cifuentes, K.Y. Rhee, and D. Hui, Enhancement of Mechanical Properties of Aluminium/Epoxy Composites with Silane Functionalization of Aluminium Powder, Composites B, 2012, 43, p 1743–1748CrossRefGoogle Scholar
  10. 10.
    G. Zhang, G. Xie, J. Wang, L. Si, D. Guo, S. Wen, and F. Yang, Controlled Friction Behaviors of Porous Copper/Graphite Storing Ionic Liquid through Electrical Stimulation, Adv. Eng. Mater., 2017, 20(5), p 1700866CrossRefGoogle Scholar
  11. 11.
    G. Zhang, G. Xie, L. Si, S. Wen, and D. Guo, Ultralow Friction Self-Lubricating Nanocomposites with Mesoporous Metal–Organic Frameworks as Smart Nanocontainers for Lubricants, ACS Appl. Mater. Interfaces, 2017, 9, p 38146–38152CrossRefGoogle Scholar
  12. 12.
    T.M. Pollock, D.M. Lipkin, and K.J. Hemker, Multifunctional Coating Interlayers for thermal-Barrier Systems, MRS Bull., 2012, 37, p 923–931CrossRefGoogle Scholar
  13. 13.
    P. Nitin, G. Maurice, and H.J. Eric, Thermal Barrier Coatings for Gas-Turbine Engine Applications, Science, 2002, 296, p 280–284CrossRefGoogle Scholar
  14. 14.
    L. Yves, Durability of Nanosized Oxygen-Barrier Coatings on Polymers, Prog. Mater Sci., 2003, 48, p 1–55CrossRefGoogle Scholar
  15. 15.
    C.P.F. Crissia, T.B.N. Annibal, P.S. Adelina, and O.F. Luiz, P(VDF-TrFE)/ZrO2 Polymer-Composites for X-Ray Shielding, Mater. Res., 2016, 19, p 426–433CrossRefGoogle Scholar
  16. 16.
    B. Ma, Y. Li, and K. Su, Characterization of Ceria-Yttria Stabilized Zirconia Plasma-Sprayed Coatings, Appl. Surf. Sci., 2009, 255, p 7234–7237CrossRefGoogle Scholar
  17. 17.
    S.K. Tadokoro and E.N.S. Muccillo, Physical Characteristics and Sintering Behavior of Ultrafine Zirconia–Ceria Powders, J. Eur. Ceram. Soc., 2002, 22, p 1723–1728CrossRefGoogle Scholar
  18. 18.
    W. Huang, C. Wang, J. Yang, B. Zou, X. Meng, Y. Wang, X. Cao, and Z. Wang, Effect of Zr/Ce Molar Ratio on the Structure of Powders and Zr1−xCexO2 Coatings on Quartz Fiber Reinforced Polyimide Matrix Composites via Sol–Gel Process, J. Sol Gel Sci. Technol., 2012, 61, p 213–223CrossRefGoogle Scholar
  19. 19.
    K.V. Pochiraju, G.P. Tandon, and G.A. Schoeppner, Long-Term Durability of Polymeric Matrix Composites, 1st ed., Springer, Berlin, 2012, p 1–677CrossRefGoogle Scholar
  20. 20.
    X.F. Yao, H.Y. Yeh, D. Zhou, and A.H. Zhang, The Structural Characterization and Properties of SiO2-Epoxy Nanocomposites, J. Compos. Mater., 2006, 40, p 371–381CrossRefGoogle Scholar
  21. 21.
    V.K. Rangari, T.A. Hassan, Q. Mayo, and S. Jeelani, Size Reduction of WO3 Nanoparticles by Ultrasound Irradiation and Its Applications in Structural Nanocomposites, Compos. Sci. Technol., 2009, 69, p 2293–2300CrossRefGoogle Scholar
  22. 22.
    S. Datta, B.M. Nagabhushana, and R. Harikrishna, A New Nano-ceria Reinforced Epoxy Polymer Composite with Improved Mechanical Properties, IJARET, 2012, 3, p 248–256Google Scholar
  23. 23.
    R. Medina, F. Haupert, and A.K. Schlarb, Improvement of Tensile Properties and Toughness of an Epoxy Resin by Nanozirconium-Dioxide Reinforcement, J. Mater. Sci., 2008, 43, p 3245–3252CrossRefGoogle Scholar
  24. 24.
    S.M. Mirabedini, M. Behzadnasab, and K. Kabiri, Effect of Various Combinations of Zirconia and Organoclay Nanoparticles on Mechanical and Thermal Properties of an Epoxy Nanocomposite Coating, Composites A, 2012, 43, p 2095–2106CrossRefGoogle Scholar
  25. 25.
    P. Dittanet and R.A. Pearson, Effect of Silica Nanoparticle Size on Toughening Mechanisms of Filled Epoxy, Polymer, 2012, 53, p 1890–1905CrossRefGoogle Scholar
  26. 26.
    M. Sudheer, K.M. Subbaya, D. Jawali, and T. Bhat, Mechanical Properties of Potassium Titanate Whisker Reinforced Epoxy Resin Composites, J. Miner. Mater. Charact. Eng., 2012, 11, p 193–210Google Scholar
  27. 27.
    H.J. Kim, D.H. Jung, I.H. Jung, J.I. Cifuentes, K.Y. Rhee, and D. Hui, Enhancement of Mechanical Properties of Aluminium/Epoxy Composites with Silane Functionalization of Aluminium Powder, Composites B, 2012, 43, p 1743–1748CrossRefGoogle Scholar
  28. 28.
    H. Faleh, R. Al-Mahaidi, and V. Shen, Fabrication and Characterization of Nanoparticle Reinforced Epoxy, Compos. B Eng., 2012, 43, p 3076–3080CrossRefGoogle Scholar
  29. 29.
    A. Toldy, B. Szolnoki, and G.Y. Marosi, Flame Retardancy of Fibre-Reinforced Epoxy Resin Composites for Aerospace Applications, Polym. Degrad. Stab., 2011, 96, p 371–376CrossRefGoogle Scholar
  30. 30.
    S. Lu, J. Ban, and K. Liu, Preparation and Characterization of Liquid Crystalline Polyurethane/Al2O3/Epoxy Resin Composites for Electronic Packaging, Int. J. Polym. Sci., 2012, 2012, p 728235CrossRefGoogle Scholar
  31. 31.
    Y. He, B.E. Moreira, and A. Overson, Thermal Characterization of an Epoxy-Based Under Fill Material for Flip Chip Packaging, Thermochim. Acta, 2000, 357–358, p 1–8CrossRefGoogle Scholar
  32. 32.
    D. Ratna, T.K. Chongdar, and B.C. Chakraborty, Mechanical Characterization of New Glass Fiber Reinforced Epoxy Composites, Polym. Compos., 2004, 25, p 165–171CrossRefGoogle Scholar
  33. 33.
    B. Kchaou, C. Turki, and M. Salvia, Dielectric and Friction Behaviour of Unidirectional Glass Fibre Reinforced Epoxy (GFRE), Wear, 2008, 265, p 763–771CrossRefGoogle Scholar
  34. 34.
    C.S. Tiwary, S. Kishore, R. Vasireddi, D.R. Mahapatra, P.M. Ajayan, and K. Chattopadhyay, Electronic Waste Recycling via Cryo-Milling and Nanoparticle Beneficiation, Mater. Today, 2017, 20, p 67–73CrossRefGoogle Scholar
  35. 35.
    M. Abdalla, D. Dean, M. Theodore, J. Fielding, E. Nyairo, and G. Price, Magnetically Processed Carbon Nanotube/Epoxy Nanocomposites: Morphology, Thermal, and Mechanical Properties, Polymer, 2010, 51(7), p 1614–1620CrossRefGoogle Scholar
  36. 36.
    Y. Pan, Y. Xu, L. An, H. Lu, Y. Yang, and W. Chen, Hybrid Network Structure and Mechanical Properties of Rodlike Silicate/Cyanate Ester Nanocomposites, Macromolecules, 2008, 41(23), p 9245–9258CrossRefGoogle Scholar
  37. 37.
    J. Njuguna, K. Pielichowski, and S. Desai, Nanofiller-Reinforced Polymer Nanocomposites, Polym. Adv. Technol., 2008, 19(8), p 947–959CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringIndian Institute of ScienceBangaloreIndia

Personalised recommendations