Journal of Materials Engineering and Performance

, Volume 27, Issue 11, pp 5926–5937 | Cite as

Microstructural Characterization and Electrochemical Behavior of AA2014 Al-Cu-Mg-Si Alloy of Various Tempers

  • K. S. GhoshEmail author
  • Kapil Tripati


AA2014 Al-Cu-Mg-Si alloy is subjected to aging heat treatment, and microstructural features and electrochemical behavior of the AA2014 Al-Cu-Mg-Si alloy of various tempers have been characterized. Hardness measurement of the alloy of different tempers showed typical age hardening behavior. X-ray diffraction and transmission electron microscopy studies revealed the presence of characteristic phases. Differential scanning calorimetry study displayed the sequence of solid-state precipitation and dissolution reactions in the AA2014 alloy of various tempers. Electrochemical behavior was assessed by measurement of variation of open-circuit voltage with time, potentiodynamic polarization and potentiodynamic cyclic polarization of the AA2014 alloy of various tempers in 3.5 wt.% NaCl solution at near neural (pH ~ 7) and at alkaline (pH 12) conditions. Potentiodynamic polarization studies of different tempers in 3.5 wt.% NaCl solution at pH ~ 7 showed that the corrosion potential (Ecorr) value has shifted toward more negative (active) direction with increasing aging time. The cyclic polarization in 3.5 wt.% NaCl solution at pH ~ 7 displayed active–passive behavior and also showed a large hysteresis loop indicating high pit growth damage.


AA2014 Al-Cu-Mg-Si alloy DSC electrochemical polarization hardness TEM XRD 



Authors would like to thank the Director, National Institute of Technology (NIT), Durgapur, India, for developing facilities for research. Authors are also grateful to the staff members of Central Research Facility, Indian Institute of Technology, Kharagpur, India, for extending the HRTEM facility.


  1. 1.
    I.J. Polmear, Light Alloys Metallurgy of the Light Metals, Edward Arnold Publication, London, 1995, p 18–143Google Scholar
  2. 2.
    D.G. Eskin, Decomposition of Supersaturated Solid Solutions in Al-Cu-Mg-Si Alloys, J. Mater. Sci., 2003, 38(2), p 279–290CrossRefGoogle Scholar
  3. 3.
    C.R. Brooks, Heat Treatment, Structure and Properties of Nonferrous Alloys, American Society for Metals, Metals Park, 1982, p 121Google Scholar
  4. 4.
    D.J. Chakrabarti and D.E. Laughin, Phase Relations and Precipitation in Al-Mg-Si Alloys with Cu Additions, Prog. Mater. Sci., 2004, 49(3-4), p 389–410CrossRefGoogle Scholar
  5. 5.
    A. Heinz, A. Haszler, C. Keidel, S. Moldenhauer, and R. Benedictus, Recent Development in Aluminium Alloys for Aerospace Applications, Mater. Sci. Eng. A, 2000, 280, p 102–107CrossRefGoogle Scholar
  6. 6.
    J.C. Williams and E.A. Starke, Jr., Progress in Structural Materials for Aerospace Systems, Acta Mater., 2003, 51, p 5775–5799CrossRefGoogle Scholar
  7. 7.
    C.R. Hutchuinson and S.P. Ringer, Precipitation Process in Al-Cu-Mg Alloys Microalloyed with Si, Metall. Mater. Trans. A, 2000, 31A, p 2721CrossRefGoogle Scholar
  8. 8.
    G. Riotino and A. Zanad, Coupled Formation of Hardening Particles on Pre-precipittaions in an Al-Cu-Mg-Si AA2014 Alloy, Mater. Lett., 1998, 37, p 241–245CrossRefGoogle Scholar
  9. 9.
    J.R. Davis, ASM Specialty Handbook, Corrosion of Aluminium and Aluminium Alloys, ASM International, The Materials International Society, Materials Park, 1998Google Scholar
  10. 10.
    G. Buchheit, R.P. Grant, P.F. Hilava, B. McKenzie, and G.L. Zender, Local Dissolution Phenomenon Associated with S Phase (Al2MgCu) Particles in Aluminium Alloy AA 2024-T3, Electrochem Soc, 1997, 144(8), p 2621–2628CrossRefGoogle Scholar
  11. 11.
    A. Boag, A.E. Huges, A.M. Glenn, T.H. Muster, and D. McCulloch, Corrosion of 2024-T3 Part I: Localised Corrosion of Isolated IM Particles, Corros. Sci., 2011, 53(1), p 17–26CrossRefGoogle Scholar
  12. 12.
    W. Zhang and G.S. Frankel, Transitions Between Pitting and Intergranular Corrosion in 2024, Electrochem. Acta, 2003, 48(9), p 1193–1210CrossRefGoogle Scholar
  13. 13.
    V. Guillaumin and G. Mankowski, Localised Corrosion of 2024 T351 Aluminium Alloy in Chloride Media, Corros. Sci., 1999, 41(3), p 421–438CrossRefGoogle Scholar
  14. 14.
    T.J. Warner, M.P. Schmidt, F. Sommer, and D. Bellot, Characterization of Corrosion Initiation on 2024 Aluminium Alloy by Atomic Force Microscopy, Z. Metallkd., 1995, 86, p 494–501Google Scholar
  15. 15.
    M.K. Cavnaugh, N. Birbilis, R.G. Buchheit, and F. Bovard, Investigating Localized Corrosion Susceptibility Arising from Sc Containing Intermetallic Al3Sc in High Strength Al-Alloys, Scripta Mater., 2007, 56(11), p 995–998CrossRefGoogle Scholar
  16. 16.
    R.H. Jones and R.E. Ricker, Stress-Corrosion Cracking: Materials and Evaluation, ASM International, Materials Park, 1992, p 72Google Scholar
  17. 17.
    K.S. Ghosh, K. Das, and U.K. Chatterjee, Correlation of Stress Corrosion Cracking Behaviour and Open Circuit Potential in Al-Li-Cu-Mg-Zr alloys, Mater. Corros., 2007, 58(3), p 181–187CrossRefGoogle Scholar
  18. 18.
    T. Suter and R.C. Alkire, Microelectrochemical Studies of Pit Initiation at Single Inclusions in Al 2024-T3, J. Electrochem. Soc., 2010, 148(1), p B36–B42CrossRefGoogle Scholar
  19. 19.
    K.S. Rao and K.P. Rao, Pitting Corrosion of Heat-Treatable Aluminium Alloys and Welds: A Review, Trans. Indian Inst. Met, 2004, 57, p 593–610Google Scholar
  20. 20.
    N. Birbilis and R.G. Buchheit, Investigation and Discussion of Characteristics for Intermetallic Phases Common to Aluminum Alloys as a Function of Solution pH, J. Electrochem. Soc., 2008, 155(3), p C117–C126CrossRefGoogle Scholar
  21. 21.
    K.S. Ghosh, M.D. Hilal, and B. Sagnik, Corrosion Behavior of 2024 Al-Cu-Mg Alloy of Various Tempers, Trans. Non-ferrous Soc. China, 2013, 23(11), p 3215–3227CrossRefGoogle Scholar
  22. 22.
    J.A. DeRose, T. Suter, A. Balkowiec, J. Michalski, K.J. Kurzydlowski, and P. Schmutz, Localised Corrosion Initiation and Microstructural Characterization of an Al 2024 Alloy with a Higher Cu to Mg Ratio, Corros. Sci., 2012, 55(2), p 313–325CrossRefGoogle Scholar
  23. 23.
    L. Xia, E. Akiyam, G. Frankel, and R. McCreery, Storage and Release of Soluble Hexavalent Chromium from Chromate Conversion Coatings, J. Electrochem. Soc., 2000, 147(7), p 2556–2562CrossRefGoogle Scholar
  24. 24.
    R.B. Leggat, S.R. Taylor, W. Zhang, and R.J. Buchheit, Corrosion Performance of Field-Applied Chromate Conversion Coatings, Corrosion, 2002, 58(3), p 283–291CrossRefGoogle Scholar
  25. 25.
    S.V. Lamaka, M.L. Zheludkevich, K.A. Yasakau, M.F. Montemor, and M.G.S. Ferreira, ERREIRA, High Effective Organic Corrosion Inhibitors for 2024 Aluminium Alloy, Electrochemica Acta, 2007, 52(25), p 7231–7247CrossRefGoogle Scholar
  26. 26.
    N.C. Rosero-Navarro, M. Curioni, R. Bingham, A. Durain, M. Aparicio, R.A. Cottis, and G.E. Thomson, Electrochemical Techniques for Practical Evaluation of Corrosion Inhibitor Effectiveness. Performance of Cerium Nitrate as Corrosion Inhibitor for 2024-T3 Alloy, Corros. Sci., 2010, 52(10), p 3356–3366CrossRefGoogle Scholar
  27. 27.
    A.K. Misra and R. Balasubramanium, Corrosion Inhibition of Aluminium Alloy AA AA2014 by Rare Earth Chlorides, Corros. Sci., 2007, 49(3), p 1027–1044CrossRefGoogle Scholar
  28. 28.
    B.R.W. Hinton, Corrosion Inhibition with Rare Earth Metal Salts, J. Alloys Compd., 1992, 180(1–2), p 15–25CrossRefGoogle Scholar
  29. 29.
    A.J. Aldykiewiz, Jr., A.J. Davenport, and H.S. Issacs, Studies of Formation of Cerium Rich Protective Films Using x-ray Adsorption Near-Edge Spectroscopy and Rotating Disk Electrode Methods, J. Electrochem. Soc., 1996, 143(1), p 147–154CrossRefGoogle Scholar
  30. 30.
    M.A. Arenas and J.J. Dambornea, Growth Mechanisms of Cerium Layers on Galvanised Steel, Electrochemica Acta, 2003, 48(24), p 3693–3698CrossRefGoogle Scholar
  31. 31.
    M.L. Zheludkevich, S.K. Poznyak, L.M. Rodrigues, D. Raps, T. Hack, L.F. Dick, T. Nunes, and M.G.S. Ferreira, Active Protection Coatings with Layered Double Hydroxide Nanocontainers of Corrosion Inhibitor, Corros. Sci., 2010, 52(2), p 602–611CrossRefGoogle Scholar
  32. 32.
    M.J. Starink, The Analysis of Al-Based Alloys by Calorimetry: Quantitative Analysis of Reactions and Reaction Kinetics, Int. Mater. Rev., 2004, 49(3–4), p 191–226. CrossRefGoogle Scholar
  33. 33.
    K.S. Ghosh, K. Das, and U.K. Chatterjee, Kinetics of Solid State Reactions in Al-Li-Cu-Mg-Zr Alloys from Calorimetric Studies, Metall. Mater. Trans. A, 2007, 38A(9), p 1965–1975CrossRefGoogle Scholar
  34. 34.
    M.I. Daoudi, A. Triki, and A. Redjiaimia, DSC Study of the Kinetic Parameters of the Metastable Phases Formation During Non-isothermal Annealing of an Al-Si-Mg Alloy, J. Therm. Anal. Calorim., 2011, 104, p 627–633. CrossRefGoogle Scholar
  35. 35.
    J.M. Papazian, A Calorimetric Study of Precipitation in Aluminium Alloy 2219, Metal Trans. A, 1981, 12, p 269–280CrossRefGoogle Scholar
  36. 36.
    K.S. Ghosh, K. Das, and U.K. Chatterjee, Calorimetric Studies of 8090 and 1414 Al-Li-Cu-Mg-Zr Alloys of Conventional and Retrogressed and Reaged Tempers, J. Mater. Sci., 2007, 42, p 4276–4290CrossRefGoogle Scholar
  37. 37.
    N.D. Chowdhury and K.S. Ghosh, Calorimetric Studies of Ag-Sn-Cu Dental Amalgam and Their Amalgams, J. Therm. Anal. Calorim., 2017. CrossRefGoogle Scholar
  38. 38.
    S.C. Wang and M.J. Starink, Precipitates and Intermetallic Phases in Precipitation Hardening Al-Cu-Mg-(Li) Based Alloys, Int. Mater. Rev., 2005, 50(4), p 193–215CrossRefGoogle Scholar
  39. 39.
    S.P. Ringer, K. Hono, T. Sakurai, and I.J. Polmear, Cluster Hardening in an Aged Al-Cu-Mg Alloy, Scripta Mater., 1997, 36(5), p 517–521CrossRefGoogle Scholar
  40. 40.
    M.J. Starink and S.C. Wang, The Thermodynamics of and Strengthening due to Co-Clusters: General Theory and Application to the Case of Al-Cu-Mg Alloys, Acta Mater., 2009, 57(8), p 2376–2389CrossRefGoogle Scholar
  41. 41.
    A. Chirai, T. Walther, C. Alfonso, A.M. Zahra, and C.Y. Zahra, Coexistence of Clusters, GPB Zones, S″, S′ and S-phases in an Al–0.9% Cu–1.4% Mg Alloy, Acta Mater., 2000, 48(10), p 2751–2764CrossRefGoogle Scholar
  42. 42.
    G. Sha, R.K.W. Marceau, X. Gao, B.C. Muddle, and S.P. Ringer, Nanostructure of Aluminium Alloy 2024: Segregation, Clustering and Precipitation Processes, Acta Mater., 2011, 59(4), p 1659–1670CrossRefGoogle Scholar
  43. 43.
    A. Dhal, S.K. Panigrahi, and M.S. Shunmugam, Precipitation Phenomena, Thermal Stability and Grain Growth Kinetics in an Ultra-Fine Grained Al AA2014 Alloy After Annealing Treatment, J. Alloys Compd., 2015, 649, p 229–238CrossRefGoogle Scholar
  44. 44.
    I. Dutta, C.P. Harper, and G. Dutta, Role of Al2O3 particulate reinforcements on precipitation in AA2014 Al-matrix, Metall. Mater. Trans. A, 1994, 25, p 1591–1602CrossRefGoogle Scholar
  45. 45.
    P. Bassani, E. Gariboldi, and G. Vimercati, Calorimetric Analysis on Aged Al-4.4Cu-0.5Mg-0.9Si-0.8Mn Alloy (AAAA2014 grade), J. Therm. Anal. Calorim., 2007, 87, p 247–253CrossRefGoogle Scholar
  46. 46.
    S.K. Ghosh, Influence of Cold Deformation on the Ageing Behaviour of Al-Cu-Si-Mg Alloy, J. Mater. Sci. Technol., 2011, 27, p 193–198CrossRefGoogle Scholar
  47. 47.
    A.K. Mukhopadhyay, C.N.J. Tite, H.M. Flower, P.J. Gregson, and F. Sale, Aluminium Lithium Alloys IV, Proc. 4th Int. Conf. on Aluminium Lithium Alloys, G. Champier, B. Dubost, D. Miannay, L. Sabetay, 1987, (Paris), (Journal de Phyique, Suppl. 48, 1987), p C3:439Google Scholar
  48. 48.
    T.S. Parel, S.C. Wang, and M.J. Starink, Hardening of an Al-Cu-Mg Alloy Containing Types I, and II, S Phase Precipitates, Mater. Des., 2010, 31, p 52–55CrossRefGoogle Scholar
  49. 49.
    M.G. Fontana, Corrosion Engineering, Chapter 10, 3rd ed., McGraw Hill International Editions, Singapore, 1987, p 500–502Google Scholar
  50. 50.
    K.D. Ralson, N. Birbilis, D. Weylan, and C.R. Hutchinson, The Effect of Precipitate Size on Yield Strength-Pitting Corrosion Correlation in Al-Cu-Mg Alloys, Acta Mater., 2010, 58, p 5941–5948CrossRefGoogle Scholar
  51. 51.
    Florian Mansfeld, Electrochemical Methods of Corrosion Testing, ASM Metal Handbook, Vol 13A, TSM International, The Materials Information Society, Materials Park, 2008, p 446–462Google Scholar
  52. 52.
    J.R. Scully, T.O. Knight, R.G. Buchheit, and D.E. Peebles, Electrochemical Characteristics of the Al2Cu, Al3Ta and Al3Zr Intermetallic Phases and Their Relevancy to the Localized Corrosion of Al Alloys, Corros. Sci., 1993, 35(1–4), p 185–195CrossRefGoogle Scholar
  53. 53.
    E. McCafferty, The Electrode Kinetics of Pit Initiation on Aluminum, Corros. Sci., 1995, 37(3), p 481–492CrossRefGoogle Scholar
  54. 54.
    A. Boag, R.J. Taylor, T.H. Muster, N. Goodman, D. McCulloch, C. Ryan, B. Rout, D. Jamieson, and A.E. Huges, Stable Pit Formation on AA2024-T3 in an Environment, Corros. Sci., 2010, 52(1), p 90–103CrossRefGoogle Scholar
  55. 55.
    E.H. Hollingsworth and H.Y. Hunsicker, ASM Handbook, Vol 13, ASM International, Materials Park, 1992, p 583Google Scholar
  56. 56.
    J.R. Scully, ASM Handbook, Vol 13A, ASM International, Materials Park, 2003, p 68Google Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of TechnologyDurgapurIndia

Personalised recommendations