Journal of Materials Engineering and Performance

, Volume 27, Issue 11, pp 5762–5768 | Cite as

Strengthening of C/SiC Composites by Electrophoretic Deposition of CNTs on a SiC Coating

  • Kun Yang
  • Hui MeiEmail author
  • Daoyang Han
  • Laifei Cheng


The current study reports the enhancement of mechanical properties of carbon fiber-reinforced silicon carbide ceramic matrix composites (C/SiC CMCs) by the application of a carbon nanotube/silicon carbide (CNT/SiC) coating. CNTs were deposited on the surfaces of C/SiC composites using electrophoretic deposition (EPD), after which infiltration by SiC was achieved through a chemical vapor infiltration process. An EPD duration of 5 min was associated with a 40% increase in the ultimate flexural strength relative to that of composites with a pure SiC coating. The observed enhancement was rationalized by the microstructural observations of SiC infiltration into the porous CNT morphology and the subsequent formation of CNT/SiC layers on the surfaces of the composites and by the inherent toughness of the SiC whiskers. The flexural strength decreased with EPD durations greater than 5 min due to the formation of thick CNT meshes, which decreased the open porosity and thereby obstructed further SiC infiltration. This is a viable methodology for the improvement of mechanical properties of CMCs by the introduction of a ceramic coating containing CNT.


ceramics matrix coatings composites electrical inorganic mechanical static 



This work had been financially supported by Natural Science Foundation of China (51272210 and 50902112), Program for New Century Excellent Talents in University (NCET-13-0474), Foreign Talents Introduction and Academic Exchange Program of China (B08040), and Northwestern Polytechnical University (NPU) Foundation for Fundamental Research (NPU-FFR-JC201135).


  1. 1.
    N.P. Bansal and J. Lamon, Ceramic Matrix Composites: Materials, Modeling and Technology, Wiley, Hoboken, 2014CrossRefGoogle Scholar
  2. 2.
    W. Krenkel, Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications, Wiley, Weinheim, 2008CrossRefGoogle Scholar
  3. 3.
    D. Han, H. Mei, S. Farhan, S. Xiao, J. Xia, and L. Cheng, Anisotropic Compressive Properties of Porous CNT/SiC Composites Produced by Direct Matrix Infiltration of CNT Aerogel, J. Am. Ceram. Soc., 2017, 100, p 2243–2252CrossRefGoogle Scholar
  4. 4.
    R. Naslain, F. Langlais, R. Pailler, and G. Vignoles, Processing of SiC/SiC Fibrous Composites According to CVI-techniques, Advanced SiC/SiC Ceramic Composites: Developments and Applications in Energy Systems, A. Kohyama, M. Singh, H.-T. Lin, and Y. Katoh, Ed., Wiley, Hoboken, 2006, p 19–37Google Scholar
  5. 5.
    R. Naslain, Design, Preparation and Properties of non-oxide CMCs for Application in Engines and Nuclear Reactors: An Overview, Compos. Sci. Technol., 2004, 64, p 155–170CrossRefGoogle Scholar
  6. 6.
    J. Li, J. Sha, J. Dai, Z. Lv, J. Shao, S. Wang, and Z. Zhang, Fabrication and Characterization of Carbon-Bonded Carbon Fiber Composites with In Situ Grown SiC Nanowires, Carbon, 2017, 118, p 148–155CrossRefGoogle Scholar
  7. 7.
    D. Han, H. Mei, S. Farhan, S. Xiao, Q. Bai, and L. Cheng, Anisotropic Compressive Properties of CNT/SiC Composites Produced by Direct Matrix Infiltration of Vertically Aligned CNT Forests, J. Alloys Compd., 2017, 701, p 722–726CrossRefGoogle Scholar
  8. 8.
    D. Han, H. Mei, S. Xiao, and L. Cheng, A Direct Chemical Vapor Infiltration Route for a Carbon Nanotube/Silicon Carbide Thermal Protection System, J. Alloys Compd., 2018, 745, p 409–412CrossRefGoogle Scholar
  9. 9.
    D. Han, H. Mei, S. Xiao, W. Xue, Q. Bai, and L. Cheng, CNT/SiC Composites Produced by Direct Matrix Infiltration of Self-Assembled CNT Sponges, J. Mater. Sci., 2017, 52, p 8401–8411CrossRefGoogle Scholar
  10. 10.
    D. Han, H. Mei, S. Xiao, and L. Cheng, Electromagnetic Shielding Properties of Carbon-Rich Chemical Vapor Infiltration-Prone Silicon Carbide Matrix Composites, J. Am. Ceram. Soc., 2018, 101, p 1991–1998CrossRefGoogle Scholar
  11. 11.
    D. Han, H. Mei, S. Xiao, J. Xia, J. Gu, and L. Cheng, Porous SiCnw/SiC Ceramics with Unidirectionally Aligned Channels Produced by Freeze-Drying and Chemical Vapor Infiltration, J. Eur. Ceram. Soc., 2017, 37, p 915–921CrossRefGoogle Scholar
  12. 12.
    Y.P. Xie, L.F. Cheng, L.J. Li, Z.X. Meng, and L.T. Zhang, Strengthening/Toughening of 2D C/SiC Composites by Coating, Ceram. Int., 2014, 40, p 6875–6880CrossRefGoogle Scholar
  13. 13.
    Y. Xiang, W. Li, S. Wang, B. Zhang, and Z. Chen, ZrB2/SiC as a Protective Coating for C/SiC Composites: Effect of High Temperature Oxidation on Mechanical Properties and Anti-ablation Property, Compos. B Eng., 2013, 45, p 1391–1396CrossRefGoogle Scholar
  14. 14.
    G. Overney, W. Zhong, and D. Tománek, Structural Rigidity and Low Frequency Vibrational Modes of Long Carbon Tubules, Z. Phys. D, 1993, 27, p 93–96CrossRefGoogle Scholar
  15. 15.
    E.W. Wong, P.E. Sheehan, and C.M. Lieber, Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes, Science, 1997, 277, p 1971–1975CrossRefGoogle Scholar
  16. 16.
    S. Iijima, C. Brabec, A. Maiti, and J. Bernholc, Structural Flexibility of Carbon Nanotubes, J. Chem. Phys., 1996, 104, p 2089–2092CrossRefGoogle Scholar
  17. 17.
    R. Saito, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, Electronic Structure of Chiral Graphene Tubules, Appl. Phys. Lett., 1992, 60, p 2204–2206CrossRefGoogle Scholar
  18. 18.
    M. Estili and Y. Sakka, Recent Advances in Understanding the Reinforcing Ability and Mechanism of Carbon Nanotubes in Ceramic Matrix Composites, Sci. Technol. Adv. Mater., 2014, 15, p 1–25Google Scholar
  19. 19.
    J. Cho, A.R. Boccaccini, and M.S.P. Shaffer, Ceramic Matrix Composites Containing Carbon Nanotubes, J. Mater. Sci., 2009, 44, p 1934–1951CrossRefGoogle Scholar
  20. 20.
    E. Zapata-Solvas, D. Gómez-García, and A. Domínguez-Rodríguez, Towards Physical Properties Tailoring of Carbon Nanotubes-Reinforced Ceramic Matrix Composites, J. Eur. Ceram. Soc., 2012, 32, p 3001–3020CrossRefGoogle Scholar
  21. 21.
    K.G. Dassios, Carbon Nanotube-Reinforced Ceramic Matrix Composites: Processing and Properties, High Temperature Ceramic Matrix Composites, Vol 8, L. Zhang and D. Jiang, Ed., Wiley, Hoboken, 2014, p 133–157Google Scholar
  22. 22.
    D. Han, H. Mei, S. Xiao, K.G. Dassios, and L. Cheng, A Review on the Processing Technologies of Carbon Nanotube/Silicon Carbide Composites, J. Eur. Ceram. Soc., 2018, 38, p 3695–3708CrossRefGoogle Scholar
  23. 23.
    X. Gui, H. Li, L. Zhang, Y. Jia, L. Liu, Z. Li, J. Wei, K. Wang, H. Zhu, Z. Tang, D. Wu, and A. Cao, A Facile Route to Isotropic Conductive Nanocomposites by Direct Polymer Infiltration of Carbon Nanotube Sponges, ACS Nano, 2011, 5, p 4276–4283CrossRefGoogle Scholar
  24. 24.
    J.N. Coleman, U. Khan, and Y.K. Gun’Ko, Mechanical Reinforcement of Polymers Using Carbon Nanotubes, Adv. Mater., 2006, 18, p 689–706CrossRefGoogle Scholar
  25. 25.
    M. Moniruzzaman and K.I. Winey, Polymer Nanocomposites Containing Carbon Nanotubes, Macromolecules, 2006, 39, p 5194–5205CrossRefGoogle Scholar
  26. 26.
    W.A. Curtin and B.W. Sheldon, CNT-Reinforced Ceramics and Metals, Mater. Today, 2004, 7, p 44–49CrossRefGoogle Scholar
  27. 27.
    T. Laha, Y. Liu, and A. Agarwal, Carbon Nanotube Reinforced Aluminum Nanocomposite via Plasma and High Velocity Oxy-Fuel Spray Forming, J. Nanosci. Nanotechnol., 2007, 7, p 515–524CrossRefGoogle Scholar
  28. 28.
    W.X. Chen, J.P. Tu, L.Y. Wang, H.Y. Gan, Z.D. Xu, and X.B. Zhang, Tribological Application of Carbon Nanotubes in a Metal-Based Composite Coating and Composites, Carbon, 2003, 41, p 215–222CrossRefGoogle Scholar
  29. 29.
    G. Zheng, H. Sano, and Y. Uchiyama, A Carbon Nanotube-Enhanced SiC Coating for the Oxidation Protection of C/C Composite Materials, Compos. B Eng., 2011, 42, p 2158–2162CrossRefGoogle Scholar
  30. 30.
    W.X. Chen, J.P. Tu, Z.D. Xu, W.L. Chen, X.B. Zhang, and D.H. Cheng, Tribological Properties of Ni-P-Multi-walled Carbon Nanotubes Electroless Composite Coating, Mater. Lett., 2003, 57, p 1256–1260CrossRefGoogle Scholar
  31. 31.
    G. Zheng, H. Mizuki, H. Sano, and Y. Uchiyama, CNT-PyC-SiC/SiC Double-Layer Oxidation-Protection Coating on C/C Composite, Carbon, 2008, 46, p 1808–1811CrossRefGoogle Scholar
  32. 32.
    L. Feng, K. Li, Z. Si, H. Li, Q. Song, Y. Shan, and S. Wen, Microstructure and Thermal Shock Resistance of SiC/CNT-SiC Double-Layer Coating for Carbon/Carbon Composites, Ceram. Int., 2014, 40, p 13683–13689CrossRefGoogle Scholar
  33. 33.
    A. Zarebidaki and S.R. Allahkaram, Effect of Surfactant on the Fabrication and Characterization of Ni-P-CNT Composite Coatings, J. Alloys Compd., 2011, 509, p 1836–1840CrossRefGoogle Scholar
  34. 34.
    H. Mei, Q. Bai, T. Ji, H. Li, and L. Cheng, Effect of Carbon Nanotubes Electrophoretically-Deposited on Reinforcing Carbon Fibers on the Strength and Toughness of C/SiC Composites, Compos. Sci. Technol., 2014, 103, p 94–99CrossRefGoogle Scholar
  35. 35.
    J. Dai, J. Sha, J. Shao, Y. Zu, M. Lei, S. Flauder, N. Langhof, and W. Krenkel, In-Situ Growth of SiC Nanostructures and their Influence on Anti-oxidation Capability of C/SiC composites, Corros. Sci., 2017, 124, p 71–79CrossRefGoogle Scholar
  36. 36.
    H. Mei, D. Han, S. Xiao, T. Ji, J. Tang, and L. Cheng, Improvement of the Electromagnetic Shielding Properties of C/SiC Composites by Electrophoretic Deposition of Carbon Nanotube on Carbon Fibers, Carbon, 2016, 109, p 149–153CrossRefGoogle Scholar
  37. 37.
    M.C. Halbig, in The Influence of Temperature, Stress, and Environment on the Oxidation and Life of C/SiC Composites, 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science Proceedings (Wiley Online Library, 2002), pp. 419–426.Google Scholar
  38. 38.
    Y. Liu, C. Hu, W. Feng, J. Men, L. Cheng, and L. Zhang, Microstructure and Properties of Diamond/SiC Composites Prepared by Tape-Casting and Chemical Vapor Infiltration Process, J. Eur. Ceram. Soc., 2014, 34, p 3489–3498CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Science and Technology on Thermostructural Composite Materials LaboratoryNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China

Personalised recommendations