Journal of Materials Engineering and Performance

, Volume 27, Issue 11, pp 5644–5655 | Cite as

Microstructure and Mechanical Properties of Cast Al-5Zn-2Mg Alloy Subjected to Equal-Channel Angular Pressing

  • G. K. ManjunathEmail author
  • G. V. Preetham Kumar
  • K. Udaya Bhat
  • Prashant Huilgol


In the present work, cast Al-5Zn-2Mg alloy was processed through equal-channel angular pressing (ECAP) in route BC up to four number of passes. Microstructure and mechanical properties were investigated on processed and unprocessed materials. In cast condition, the material was composed of dendritic structure. After homogenization treatment, large-sized grains were observed. After ECAP processing, significant grain refinement was observed. After ECAP processing, high-density dislocations and high degree of misorientation between the grains were observed. In cast material, rod-shaped precipitates were observed, while, after ECAP processing, spherical-shaped precipitates were observed. ECAP processing leads to a noticeable improvement in the mechanical properties of the material. After four passes, 122% improvement in the microhardness and 135% improvement in the ultimate tensile strength of the material were observed. After three passes, a slight decrease in the mechanical properties was observed. This is attributed to the dissolution of the metastable η′ phase, annihilation of dislocations, dynamic recrystallization and texturing during ECAP processing. Brittle fracture mode was observed in tensile testing cast and homogenized samples. After ECAP processing, fracture mode was changed into shear fracture mode.


Al-Zn-Mg alloy ECAP grain refinement mechanical properties x-ray diffraction analysis 



One of the authors Mr. G.K. Manjunath would like to thank the Director, National Institute of Technology Karnataka and MHRD-Government of India for providing Institute Research Fellowship.


  1. 1.
    R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk Nanostructured Materials from Severe Plastic Deformation, Prog. Mater. Sci., 2000, 45(2), p 103–189CrossRefGoogle Scholar
  2. 2.
    R.Z. Valiev and T.G. Langdon, Principles of Equal-Channel Angular Pressing as a Processing Tool for Grain Refinement, Prog. Mater. Sci., 2006, 51(7), p 881–981CrossRefGoogle Scholar
  3. 3.
    V.M. Segal, V.I. Raznikov, A.E. Drobyshewsky, and V.I. Kopylov, Plastic Working of Metals by Simple Shear, Russ. Metall., 1981, 1, p 99–106Google Scholar
  4. 4.
    Y.T. Zehetbauer and M.J. Zhu, Bulk Nanostrucutred Materials, Wiley, Hoboken, 2009CrossRefGoogle Scholar
  5. 5.
    M.H. Shaeri, M.T. Salehi, S.H. Seyyedein, M.R. Abutalebi, and J.K. Park, Microstructure and Mechanical Properties of Al-7075 Alloy Processed by Equal Channel Angular Pressing Combined with Aging Treatment, Mater. Des., 2014, 57, p 250–257CrossRefGoogle Scholar
  6. 6.
    K. Gopala Krishna, K. Sivaprasad, T.S.N. Sankara Narayanan, and K.C. Hari Kumar, Localized Corrosion of an Ultrafine Grained Al-4Zn-2Mg Alloy Produced by Cryorolling, Corros. Sci., 2012, 60, p 82–89CrossRefGoogle Scholar
  7. 7.
    K. Gopala Krishna, N. Singh, K. Venkateswarlu, and K.C. Hari Kumar, Tensile Behavior of Ultrafine-Grained Al-4Zn-2Mg Alloy Produced by Cryorolling, J. Mater. Eng. Perform., 2011, 20(9), p 1569–1574CrossRefGoogle Scholar
  8. 8.
    A.A. Mazilkin, O.A. Kogtenkova, B.B. Straumal, R.Z. Valiev, and B. Baretzky, Formation of Nanostructure During High-Pressure Torsion of Al-Zn, Al-Mg and Al-Zn-Mg Alloys, Defect Diffus. Forum, 2005, 237–240, p 739–744CrossRefGoogle Scholar
  9. 9.
    O.A. Kogtenkova, A.A. Mazilkin, B.B. Straumal, G.E. Abrosimova, P. Zięba, T. Czeppe, B. Baretzky, and R.Z. Valiev, Phase Transformations in Al-Mg-Zn Alloys During High Pressure Torsion and Subsequent Heating, J. Mater. Sci., 2013, 48(13), p 4758–4765CrossRefGoogle Scholar
  10. 10.
    A.A. Mazilkin, B. Baretzky, S. Enders, O.A. Kogtenkova, B.B. Straumal, E. Rabkin, and R.Z. Valiev, Hardness of Nanostructured Al-Zn, Al-Mg and Al-Zn-Mg Alloys Obtained by High-Pressure Torsion, Defect Diffus. Forum, 2006, 249, p 155–160CrossRefGoogle Scholar
  11. 11.
    K. Gopala Krishna, K. Sivaprasad, K. Venkateswarlu, and K.C. Hari Kumar, Microstructural Evolution and Aging Behavior of Cryorolled Al-4Zn-2Mg Alloy, Mater. Sci. Eng. A, 2012, 535, p 129–135CrossRefGoogle Scholar
  12. 12.
    S.L. Yang, Q.L. Lin, C. Xu, and J.H. Pan, Investigation on Fatigue Damage and Fracture of Al-5Zn-2Mg High Strength Aluminum Alloy, Appl. Mech. Mater., 2012, 184–185, p 1030–1033CrossRefGoogle Scholar
  13. 13.
    Y. Iwahashi, J. Wang, Z. Horita, M. Nemoto, and T.G. Langdon, Principle of Equal-Channel Angular Pressing for the Processing of UltraFine Grained Materials, Scr. Mater., 1996, 35(2), p 143–146CrossRefGoogle Scholar
  14. 14.
    K. Nakashima, Z. Horita, M. Nemoto, and T.G. Langdon, Development of a Multi-Pass Facility for Equal-Channel Angular Processing to High Total Strains, Mater. Sci. Eng. A, 2000, 281(1–2), p 82–87CrossRefGoogle Scholar
  15. 15.
    M. Furukawa, Z. Horita, and T.G. Langdon, Factors Influencing the Shearing Patterns in Equal-Channel Angular Pressing, Mater. Sci. Eng. A, 2002, 332(1–2), p 97–109CrossRefGoogle Scholar
  16. 16.
    O. Alvarez, C. Gonzalez, G. Aramburo, R. Herrera, and J.A. Juarez-islas, Characterization and Prediction of Microstructure in Al-Zn-Mg Alloys, Mater. Sci. Eng. A, 2005, 402(1–2), p 320–324CrossRefGoogle Scholar
  17. 17.
    S. Zhang, W. Hu, R. Berghammer, and G. Gottstein, Microstructure Evolution and Deformation Behavior of Ultrafine-Grained Al-Zn-Mg Alloys with Fine η′ Precipitates, Acta Mater., 2010, 58(20), p 6695–6705CrossRefGoogle Scholar
  18. 18.
    K.R. Cardoso, D.N. Travessa, W.J. Botta, and A.M. Jorge, Jr., High Strength AA7050 Al Alloy Processed by ECAP: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2011, 528(18), p 5804–5811CrossRefGoogle Scholar
  19. 19.
    S.D. Terhune, D. Swisher, K. Oh-Ishi, Z. Horita, T.G. Langdon, and T.R. McNelley, An Investigation of Microstructure and Grain-Boundary Evolution During ECA Pressing of Pure Aluminum, Metall. Mater. Trans. A, 2002, 33(7), p 2173–2184CrossRefGoogle Scholar
  20. 20.
    C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, Using ECAP to Achieve Grain Refinement, Precipitate Fragmentation and High Strain Rate Superplasticity in a Spray-Cast Aluminum Alloy, Acta Mater., 2003, 51(20), p 6139–6149CrossRefGoogle Scholar
  21. 21.
    C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon, Influence of ECAP on Precipitate Distributions in a Spray-Cast Aluminum Alloy, Acta Mater., 2005, 53(3), p 749–758CrossRefGoogle Scholar
  22. 22.
    S.R. Kumar, K. Gudimetla, P. Venkatachalam, B. Ravisankar, and K. Jayasankar, Microstructural and Mechanical Properties of Al 7075 Alloy Processed by Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2012, 533, p 50–54CrossRefGoogle Scholar
  23. 23.
    Y.H. Zhao, X.Z. Liao, Z. Jin, R.Z. Valiev, and Y.T. Zhu, Microstructures and Mechanical Properties of Ultrafine Grained 7075 Al Alloy Processed by ECAP and Their Evolutions During Annealing, Acta Mater., 2004, 52(15), p 4589–4599CrossRefGoogle Scholar
  24. 24.
    J. Gubicza, I. Schiller, N.Q. Chinh, J. Illy, Z. Horita, and T.G. Langdon, The Effect of Severe Plastic Deformation on Precipitation in Supersaturated Al-Zn-Mg Alloys, Mater. Sci. Eng. A, 2007, 460–461, p 77–85CrossRefGoogle Scholar
  25. 25.
    M.H. Shaeri, M. Shaeri, M.T. Salehi, S.H. Seyyedein, and M.R. Abutalebi, Effect of Equal Channel Angular Pressing on Aging Treatment of Al-7075 Alloy, Prog. Nat. Sci. Mater. Int., 2015, 25(2), p 159–168CrossRefGoogle Scholar
  26. 26.
    L.J. Zheng, H.X. Li, M.F. Hashmi, C.Q. Chen, Y. Zhang, and M.G. Zeng, Evolution of Microstructure and Strengthening of 7050 Al Alloy by ECAP Combined with Heat-Treatment, J. Mater. Process. Technol., 2006, 171(1), p 100–107CrossRefGoogle Scholar
  27. 27.
    W.J. Kim, J.K. Kim, H.K. Kim, J.W. Park, and Y.H. Jeong, Effect of Post Equal-Channel-Angular-Pressing Aging on the Modified 7075 Al Alloy Containing Sc, J. Alloys Compd., 2008, 450(1–2), p 222–228CrossRefGoogle Scholar
  28. 28.
    S.G. Chowdhury, C. Xu, and T.G. Langdon, Texture Evolution in an Aluminum Alloy Processed by ECAP with Concurrent Precipitate Fragmentation, Mater. Sci. Eng. A, 2008, 473(1–2), p 219–225CrossRefGoogle Scholar
  29. 29.
    A. Muralidhar, S. Narendranath, and H. Shivananda Nayaka, Effect of Equal Channel Angular Pressing on AZ31 Wrought Magnesium Alloys, J. Magnes. Alloy., 2013, 1(4), p 336–340CrossRefGoogle Scholar
  30. 30.
    K.R. Gopi, H. Shivananda Nayaka, and S. Sahu, Investigation of Microstructure and Mechanical Properties of ECAP-Processed AM Series Magnesium Alloy, J. Mater. Eng. Perform., 2016, 25(9), p 3737–3745CrossRefGoogle Scholar
  31. 31.
    P. Lukáč and J. Balík, Kinetics of Plastic Deformation, Key Eng. Mater., 1994, 97–98, p 307–322Google Scholar
  32. 32.
    G. Purcek, M. Aydin, O. Saray, and T. Kucukomeroglu, Enhancement of Tensile Ductility of Severe Plastically Deformed Two-Phase Zn-12Al Alloy by Equal Channel Angular Extrusion, Mater. Sci. Forum, 2009, 633–634, p 437–447CrossRefGoogle Scholar
  33. 33.
    B. Pourbahari, H. Mirzadeh, and M. Emamy, The Effects of Grain Refinement and Rare Earth Intermetallics on Mechanical Properties of As-Cast and Wrought Magnesium Alloys, J. Mater. Eng. Perform., 2018, 27(3), p 1327–1333CrossRefGoogle Scholar
  34. 34.
    A. Ma, N. Saito, M. Takagi, Y. Nishida, H. Iwata, K. Suzuki, I. Shigematsu, and A. Watazu, Effect of Severe Plastic Deformation on Tensile Properties of a Cast Al-11 mass% Si Alloy, Mater. Sci. Eng. A, 2005, 395(1–2), p 70–76CrossRefGoogle Scholar
  35. 35.
    M.I.A. El Aal, Influence of the Pre-homogenization Treatment on the Microstructure Evolution and the Mechanical Properties of Al-Cu Alloys Processed by ECAP, Mater. Sci. Eng. A, 2011, 528(22–23), p 6946–6957CrossRefGoogle Scholar
  36. 36.
    Z.C. Duan, N.Q. Chinh, C. Xu, and T.G. Langdon, Developing Processing Routes for the Equal-Channel Angular Pressing of Age-Hardenable Aluminum Alloys, Metall. Mater. Trans. A, 2010, 41(4), p 802–809CrossRefGoogle Scholar
  37. 37.
    D.R. Fang, Q.Q. Duan, N.Q. Zhao, J.J. Li, S.D. Wu, and Z.F. Zhang, Tensile Properties and Fracture Mechanism of Al-Mg Alloy Subjected to Equal Channel Angular Pressing, Mater. Sci. Eng. A, 2007, 459(1–2), p 137–144CrossRefGoogle Scholar
  38. 38.
    M.I.A. El Aal, N. El Mahallawy, F.A. Shehata, M.A. El Hameed, E.Y. Yoon, J.H. Lee, and H.S. Kim, Tensile Properties and Fracture Characteristics of ECAP-Processed Al and Al-Cu Alloys, Met. Mater. Int., 2010, 16(5), p 709–716CrossRefGoogle Scholar
  39. 39.
    O. Saray and G. Purcek, Microstructural Evolution and Mechanical Properties of Al-40 wt.% Zn Alloy Processed by Equal-Channel Angular Extrusion, J. Mater. Process. Technol., 2009, 209(5), p 2488–2498CrossRefGoogle Scholar
  40. 40.
    A. Vinogradov, T. Ishida, K. Kitagawa, and V.I. Kopylov, Effect of Strain Path on Structure and Mechanical Behavior of Ultra-Fine Grain Cu-Cr Alloy Produced by Equal-Channel Angular Pressing, Acta Mater., 2005, 53(8), p 2181–2192CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringNational Institute of Technology KarnatakaSurathkal, MangaloreIndia

Personalised recommendations