Advertisement

Effect of Orientation of Weld Line on Formability of Electron Beam-Welded Dissimilar Thickness Titanium Sheets

  • P. S. Lin Prakash
  • Sunil Kumar Biswal
  • Gour Gopal Roy
  • Maha Nand Jha
  • Martin Mascarenhas
  • Sushanta Kumar Panda
Article
  • 43 Downloads

Abstract

Recently, manufacturing industries are looking forward to get insight into the influence of weld orientation on formability of tailor-welded blanks (TWBs) of titanium sheets for design and fabrication of lightweight components. Hence, commercially pure titanium (CP Ti) sheets of 1.0 and 1.2 mm thickness were joined together by electron beam welding process using accelerating voltage of 55 kV, beam current of 14.9 mA and welding speed of 865 mm/min. Two different types of TWBs with weld line perpendicular to the rolling direction (WL ⊥ RD) and weld line parallel to the rolling direction (WL || RD) were fabricated, and subsequently, the tensile test, microstructure and microhardness characterizations were conducted to ensure quality of weld. The limiting dome height (LDH) tests were carried out using laboratory-scale setup to evaluate forming behavior of both the above TWBs in terms of FLD, strain distribution, weld line movement and failure location. It was found that the tensile stress–strain response and formability performance of TWBs were significantly influenced by weld line orientation with lower ductility, ultimate tensile strength and LDH in TWB of WL || RD. Moreover, significant weld line movement and non-uniform strain distribution with necking and subsequently fracture were observed away from the weld line in thinner 1.0 mm CP Ti sheets depending on both sample geometry and weld line orientation.

Keywords

electron beam welding forming limit diagram strain distribution tailor-welded blank titanium sheet weld line movement 

Notes

Acknowledgments

The authors are obliged to Board of Research in Nuclear Sciences (BRNS) for funding the research work (Grant Number 34/14/68/2014-BRNS/2136, Dt.19.12.2014).

References

  1. 1.
    C. Leyens and M. Peters, Titanium and Titanium Alloys: Fundamentals and Applications, Wiley, New York, 2003CrossRefGoogle Scholar
  2. 2.
    N. Kahraman, The Influence of Welding Parameters on the Joint Strength of Resistance Spot-Welded Titanium Sheets, Mater. Des., 2007, 28(2), p 420–427CrossRefGoogle Scholar
  3. 3.
    G. Urbikain, J.M. Perez, L.N. López de Lacalle, and A. Andueza, Combination of Friction Drilling and Form Tapping Processes on Dissimilar Materials for Making Nutless Joints, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2018, 232(6), p 1007–1020CrossRefGoogle Scholar
  4. 4.
    X. He, Y. Wang, Y. Lu, K. Zeng, F. Gu, and A. Ball, Self-Piercing Riveting of Similar and Dissimilar Titanium Sheet Materials, Int. J. Adv. Manuf. Technol., 2015, 80(9-12), p 2105–2115CrossRefGoogle Scholar
  5. 5.
    S.H. Dashatan, T. Azdast, S.R. Ahmadi, and A. Bagheri, Friction Stir Spot Welding of Dissimilar Polymethyl Methacrylate and Acrylonitrile Butadiene Styrene Sheets, Mater. Des., 2013, 45, p 135–141CrossRefGoogle Scholar
  6. 6.
    B. Kinsey, Z. Liu, and J. Cao, Novel Forming Technology for Tailor-Welded Blanks, J. Mater. Process. Technol., 2000, 99(1), p 145–153CrossRefGoogle Scholar
  7. 7.
    A.A. Zadpoor, J. Sinke, and R. Benedictus, Mechanics of Tailor Welded Blanks: An Overview, Key Eng. Mater., 2007, 344(July), p 373–382CrossRefGoogle Scholar
  8. 8.
    G. Lütjering and J.C. Williams, Titanium, Springer, Berlin, 2007Google Scholar
  9. 9.
    S. Lathabai, B.L. Jarvis, and K.J. Barton, Comparison of Keyhole and Conventional Gas Tungsten Arc Welds in Commercially Pure Titanium, Mater. Sci. Eng. A, 2001, 299(1-2), p 81–93CrossRefGoogle Scholar
  10. 10.
    E. Akman, A. Demir, T. Canel, and T. Sinmazçelik, Laser Welding of Ti6Al4V Titanium Alloys, J. Mater. Process. Technol., 2009, 209(8), p 3705–3713CrossRefGoogle Scholar
  11. 11.
    X. Cao and M. Jahazi, Effect of Welding Speed on Butt Joint Quality of Ti-6Al-4V Alloy Welded Using a High-Power Nd:YAG Laser, Opt. Lasers Eng., 2009, 47(11), p 1231–1241CrossRefGoogle Scholar
  12. 12.
    I. Tabernero, A. Lamikiz, S. Martínez, E. Ukar, and L.N. López De Lacalle, Modelling of Energy Attenuation Due to Powder Flow-Laser Beam Interaction During Laser Cladding Process, J. Mater. Process. Technol., 2012, 212(2), p 516–522CrossRefGoogle Scholar
  13. 13.
    A. Calleja, I. Tabernero, J.A. Ealo, F.J. Campa, A. Lamikiz, and L.N.L. de Lacalle, Feed Rate Calculation Algorithm for the Homogeneous Material Deposition of Blisk Blades by 5-Axis Laser Cladding, Int. J. Adv. Manuf. Technol., 2014, 74(9-12), p 1219–1228CrossRefGoogle Scholar
  14. 14.
    J.C. Chen and C.X. Pan, Welding of Ti-6Al-4V Alloy Using Dynamically Controlled Plasma Arc Welding Process, Trans. Nonferrous Met. Soc. China, 2011, 21(7), p 1506–1512CrossRefGoogle Scholar
  15. 15.
    Q. Yunlian, D. Ju, H. Quan, and Z. Liying, Electron Beam Welding, Laser Beam Welding and Gas Tungsten Arc Welding of Titanium Sheet, Mater. Sci. Eng. A, 2000, 280(1), p 177–181CrossRefGoogle Scholar
  16. 16.
    R.S. Korouyeh, H.M. Naeini, and G. Liaghat, Forming Limit Diagram Prediction of Tailor-Welded Blank Using Experimental and Numerical Methods, J. Mater. Eng. Perform., 2012, 21(10), p 2053–2061CrossRefGoogle Scholar
  17. 17.
    K. Bandyopadhyay, S.K. Panda, and P. Saha, Investigations into the Influence of Weld Zone on Formability of Fiber Laser-Welded Advanced High Strength Steel, J. Mater. Eng. Perform., 2014, 23(4), p 1465–1479CrossRefGoogle Scholar
  18. 18.
    R.G. Narayanan and K. Narasimhan, Influence of the Weld Conditions on the Forming-Limit Strains of Tailor-Welded Blanks, J. Strain Anal. Eng. Des., 2008, 43, p 217–227CrossRefGoogle Scholar
  19. 19.
    R.G. Narayanan and K. Narasimhan, Predicting the Forming Limit Strains of Tailor-Welded Blanks, J. Strain Anal. Eng. Des., 2008, 43(7), p 551–563CrossRefGoogle Scholar
  20. 20.
    M. Abbasi, M. Ketabchi, H.R. Shakeri, and M.H. Hasannia, Formability Enhancement of Galvanized IF-Steel TWB by Modification of Forming Parameters, J. Mater. Eng. Perform., 2012, 21(4), p 564–571CrossRefGoogle Scholar
  21. 21.
    R.K. Kesharwani, S. Basak, S.K. Panda, and S.K. Pal, Improvement in Limiting Drawing Ratio of Aluminum Tailored Friction Stir Welded Blanks Using Modified Conical Tractrix Die, J. Manuf. Process., 2017, 28, p 137–155CrossRefGoogle Scholar
  22. 22.
    M.P. Miles, T.W. Nelson, and B.J. Decker, Formability and Strength of Friction-Stir-Welded Aluminum Sheets, Metall. Mater. Trans. A, 2004, 35(11), p 3461–3468CrossRefGoogle Scholar
  23. 23.
    P.A. Friedman and G.T. Kridli, Microstructural and Mechanical Investigation of Aluminum Tailor-Welded Blanks, J. Mater. Eng. Perform., 2000, 9(5), p 541–551CrossRefGoogle Scholar
  24. 24.
    S.K. Panda and D.R. Kumar, Study of Formability of Tailor-Welded Blanks in Plane-Strain Stretch Forming, Int. J. Adv. Manuf. Technol., 2009, 44(7-8), p 675–685CrossRefGoogle Scholar
  25. 25.
    S.M. Chan, L.C. Chan, and T.C. Lee, Tailor-Welded Blanks of Different Thickness Ratios Effects on Forming Limit Diagrams, J. Mater. Process. Technol., 2003, 132(1-3), p 95–101CrossRefGoogle Scholar
  26. 26.
    U. Reisgen, M. Schleser, O. Mokrov, and E. Ahmed, Uni- and Bi-Axial Deformation Behavior of Laser Welded Advanced High Strength Steel Sheets, J. Mater. Process. Technol., 2010, 210(15), p 2188–2196CrossRefGoogle Scholar
  27. 27.
    J. Li, S.S. Nayak, E. Biro, S.K. Panda, F. Goodwin, and Y. Zhou, Effects of Weld Line Position and Geometry on the Formability of Laser Welded High Strength Low Alloy and Dual-Phase Steel Blanks, Mater. Des., 2013, 52, p 757–766CrossRefGoogle Scholar
  28. 28.
    K. Chung, W. Lee, D. Kim, J. Kim, K.H. Chung, C. Kim, K. Okamoto, and R.H. Wagoner, Macro-Performance Evaluation of Friction Stir Welded Automotive Tailor-Welded Blank Sheets: Part I—Material Properties, Int. J. Solids Struct., 2010, 47(7-8), p 1048–1062CrossRefGoogle Scholar
  29. 29.
    D. Kim, W. Lee, J. Kim, C. Kim, and K. Chung, Formability Evaluation of Friction Stir Welded 6111-T4 Sheet with Respect to Joining Material Direction, Int. J. Mech. Sci., 2010, 52(4), p 612–625CrossRefGoogle Scholar
  30. 30.
    C.P. Lai, L.C. Chan, and C.L. Chow, Effects of Stress Relieving on Limit Dome Height of Titanium Tailor-Welded Blanks at Elevated Temperatures, Mater. Sci. Forum, 2006, 532-533, p 977–980CrossRefGoogle Scholar
  31. 31.
    P.S. Lin Prakash, B. Rajak, S.K. Panda, G.G. Roy, M.N. Jha, and M. Mascarenhas, Mechanical Properties and Stretch Forming Behaviour of Electron Beam Welded Titanium Sheets of Grade-2 and Grade-5, Mater. Today Proc., 2017, 4(2), p 908–916CrossRefGoogle Scholar
  32. 32.
    J. Adamus and P. Lacki, Analysis of Forming Titanium Welded Blanks, Comput. Mater. Sci., 2014, 94(C), p 66–72CrossRefGoogle Scholar
  33. 33.
    S. Panda, S.K. Sahoo, A. Dash, M. Bagwan, G. Kumar, S.C. Mishra, and S. Suwas, Orientation Dependent Mechanical Properties of Commercially Pure (Cp) Titanium, Mater. Charact., 2014, 98, p 93–101CrossRefGoogle Scholar
  34. 34.
    D.M. Krahmer, R. Polvorosa, L.N. López de Lacalle, U. Alonso-Pinillos, G. Abate, and F. Riu, Alternatives for Specimen Manufacturing in Tensile Testing of Steel Plates, Exp. Tech., 2016, 40(6), p 1555–1565CrossRefGoogle Scholar
  35. 35.
    C.M.A. Silva, P.A.R. Rosa, and P.A.F. Martins, Innovative Testing Machines and Methodologies for the Mechanical Characterization of Materials, Exp. Tech., 2016, 40(2), p 569–581CrossRefGoogle Scholar
  36. 36.
    U.S. Dixit, S.N. Joshi, and J.P. Davim, Incorporation of Material Behavior in Modeling of Metal Forming and Machining Processes: A Review, Mater. Des., 2011, 32(7), p 3655–3670CrossRefGoogle Scholar
  37. 37.
    ASTM International, ASTM E517-00-Standard Test Methods for Plastic Strain Ratio r for Sheet Metal (ASTM International, West Conshohocken, 2010).Google Scholar
  38. 38.
    S.K. Kim and J.K. Park, In-Situ Measurement of Continuous Cooling β → α Transformation Behavior of CP-Ti, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2002, 33(4), p 1051–1056CrossRefGoogle Scholar
  39. 39.
    H. Liu, K. Nakata, N. Yamamoto, and J. Liao, Mechanical Properties and Strengthening Mechanisms in Laser Beam Welds of Pure Titanium, Sci. Technol. Weld. Join., 2011, 16(7), p 581–585CrossRefGoogle Scholar
  40. 40.
    E. Maawad, W. Gan, M. Hofmann, V. Ventzke, S. Riekehr, H.G. Brokmeier, N. Kashaev, and M. Müller, Influence of Crystallographic Texture on the Microstructure, Tensile Properties and Residual Stress State of Laser-Welded Titanium Joints, Mater. Des., 2016, 101, p 137–145CrossRefGoogle Scholar
  41. 41.
    W.B. Lee, C.Y. Lee, W.S. Chang, Y.M. Yeon, and S.B. Jung, Microstructural Investigation of Friction Stir Welded Pure Titanium, Mater. Lett., 2005, 59(26), p 3315–3318CrossRefGoogle Scholar
  42. 42.
    E. Merson, R. Brydson, and A. Brown, The Effect of Crystallographic Orientation on the Mechanical Properties of Titanium, J. Phys. Conf. Ser., 2008, 126, p 012020CrossRefGoogle Scholar
  43. 43.
    T.B. Britton, H. Liang, F.P.E. Dunne, and A.J. Wilkinson, The Effect of Crystal Orientation on the Indentation Response of Commercially Pure Titanium: Experiments and Simulations, Proc. R. Soc. A Math. Phys. Eng. Sci., 2010, 466(2115), p 695–719CrossRefGoogle Scholar
  44. 44.
    J. Hu, Z. Marciniak, and J. Duncan, Mechanics of Sheet Metal Forming, Elsevier, Amsterdam, 2002Google Scholar
  45. 45.
    W.F. Hosford and R.M. Caddell, Metal Forming: Mechanics and Metallurgy, Cambridge University Press, Cambridge, 2011CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • P. S. Lin Prakash
    • 1
  • Sunil Kumar Biswal
    • 1
  • Gour Gopal Roy
    • 2
  • Maha Nand Jha
    • 3
  • Martin Mascarenhas
    • 3
  • Sushanta Kumar Panda
    • 1
  1. 1.Department of Mechanical EngineeringIIT KharagpurKharagpurIndia
  2. 2.Department of Metallurgical and Materials EngineeringIIT KharagpurKharagpurIndia
  3. 3.Power Beam Equipment Design Section, Beam Technology Development GroupBhaba Atomic Research CentreMumbaiIndia

Personalised recommendations