Journal of Materials Engineering and Performance

, Volume 27, Issue 11, pp 6058–6068 | Cite as

Effect of Ti Addition on the Microstructure and Mechanical Properties of Weld Metals in HSLA Steels

  • Rasoul Pouriamanesh
  • Kamran DehghaniEmail author
  • Rudolf Vallant
  • Norbert Enzinger


Acicular ferrite (AF) can significantly improve the mechanical properties of steel welds. One practical approach to enhance the formation of AF is to provide the heterogonous nucleation sites such as Ti oxides. In this study, Ti was added to different conventional welding processes including shield metal arc welding (SMAW), submerged arc welding (SAW) and tandem SAW (T-SAW). In the SMAW process, TiO2 particles as a source of Ti were inserted into the weld groove, while in the SAW and the T-SAW processes, the Ti-enriched S2MoTB wire was used as the filler metal. The microstructural evolution of weldments was characterized by employing optical and scanning electron microscopes. In addition, microhardness (Vickers, HV), Charpy impact and tensile tests were carried out to investigate the mechanical properties of weldments. Although the microhardness measurements of all weldments did not vary significantly and were in the range of 205-252 HV, there was a considerable difference in tensile and impact properties of the SAW and the T-SAW weldments. In the SMAW process, the addition of TiO2 results in no significant enhancement in tensile and impact toughness. This can be attributed to the inhomogeneous distribution of TiO2 particles as well as the formation of large inclusions in the structure. On the other hand, Ti addition to WM increased the yield strength from 489 to 552 MPa for the SAW process, and in contrast, it decreased the impact toughness from 75 to 33 J. This detrimental effect can be related to the higher deposition of other alloying elements in the WM and the formation of more ferrite side plate phase. By applying the T-SAW process, more Ti in WM led to a higher content of AF in the microstructure and increased both yield strength and impact toughness from 528 to 595 MPa and 100 to 180 J, respectively.


acicular ferrite API 5LX70 mechanical properties microstructure tandem submerged arc welding (T-SAW) TiO2 particles 


  1. 1.
    M. Avazkonandeh-Gharavol, M. Haddad-Sabzevar, and A. Haerian, Effect of Copper Content on the Microstructure and Mechanical Properties of Multipass MMA, Low Alloy Steel Weld Metal Deposits, Mater. Des., 2009, 30(6), p 1902–1912CrossRefGoogle Scholar
  2. 2.
    B. Beidokhti and R. Pouriamanesh, Effect of Filler Metal on Mechanical Properties of HSLA Welds, Weld. J., 2015, 94, p 334s–341sGoogle Scholar
  3. 3.
    S.S. Babu, The Mechanism of Acicular Ferrite in Weld Deposits, Curr. Opin. Solid State Mater. Sci., 2004, 8(3), p 267–278CrossRefGoogle Scholar
  4. 4.
    A. Contreras, A. Albiter, M. Salazar, and R. Perez, Slow Strain Rate Corrosion and Fracture Characteristics of X-52 and X-70 Pipeline Steels, Mater. Sci. Eng. A, 2005, 407(1), p 45–52CrossRefGoogle Scholar
  5. 5.
    H. Yu, Y. Sun, Q. Chen, H. Jiang, and L. Zhang, Precipitation Behaviors of X70 Acicular Ferrite Pipeline Steel, Int. J. Min. Met. Mater., 2006, 13(6), p 523–527Google Scholar
  6. 6.
    S.Y. Shin, B. Hwang, S. Kim, and S. Lee, Fracture Toughness Analysis in Transition Temperature Region of API, X70 Pipeline Steels, Mater. Sci. Eng. A, 2006, 429(1), p 196–204CrossRefGoogle Scholar
  7. 7.
    S. Bhole, J. Nemade, L. Collins, and C. Liu, Effect of Nickel and Molybdenum Additions on Weld Metal Toughness in a Submerged Arc Welded HSLA Line-Pipe Steel, J. Mater. Process. Technol., 2006, 173(1), p 92–100CrossRefGoogle Scholar
  8. 8.
    W. Bose-Filho, A. Carvalho, and M. Strangwood, Effects of Alloying Elements on the Microstructure and Inclusion Formation in HSLA Multipass Welds, Mater. Charact., 2007, 58(1), p 29–39CrossRefGoogle Scholar
  9. 9.
    B. Beidokhti, A. Koukabi, and A. Dolati, Effect of Titanium Addition on the Microstructure and Inclusion Formation in Submerged arc Welded HSLA Pipeline Steel, J. Mater. Process. Technol., 2009, 209(8), p 4027–4035CrossRefGoogle Scholar
  10. 10.
    T.K. Pal and U.K. Maity, Effect of nano Size TiO2 Particles on Mechanical Properties of AWS E 11018M Type Electrode, Mater. Sci. Appl., 2011, 2(09), p 1285Google Scholar
  11. 11.
    G. Thewlis, Classification and Quantification of Microstructures in Steels, Mater. Sci. Technol., 2004, 20(2), p 143–160CrossRefGoogle Scholar
  12. 12.
    F.R. Xiao, B. Liao, Y.Y. Shan, G.Y. Qiao, Y. Zhong, C. Zhang, and K. Yang, Challenge of Mechanical Properties of an Acicular Ferrite Pipeline Steel, Mater. Sci. Eng. A, 2006, 431(1), p 41–52CrossRefGoogle Scholar
  13. 13.
    X. Wan, H. Wang, L. Cheng, and K. Wu, The Formation Mechanisms of Interlocked Microstructures in Low-Carbon High-Strength Steel Weld Metals, Mater. Charact., 2012, 67, p 41–51CrossRefGoogle Scholar
  14. 14.
    M.C. Zhao, K. Yang, and Y. Shan, The Effects of Thermo-Mechanical Control Process on Microstructures and Mechanical Properties of a Commercial Pipeline Steel, Mater. Sci. Eng. A, 2002, 335(1), p 14–20CrossRefGoogle Scholar
  15. 15.
    S. Nayak, R. Misra, J. Hartmann, F. Siciliano, and J. Gray, Microstructure and Properties of Low Manganese and Niobium Containing HIC Pipeline Steel, Mater. Sci. Eng. A, 2008, 494(1), p 456–463CrossRefGoogle Scholar
  16. 16.
    K. Junhua, Z. Lin, G. Bin, L. Pinghe, W. Aihua, and X. Changsheng, Influence of Mo Content on Microstructure and Mechanical Properties of High Strength Pipeline Steel, Mater. Des., 2004, 25(8), p 723–728CrossRefGoogle Scholar
  17. 17.
    S. St-Laurent and G. L’Espérance, Effects of Chemistry, Density and Size Distribution of Inclusions on the Nucleation of Acicular Ferrite of C-Mn Steel Shielded-Metal-Arc-Welding Weldments, Mater. Sci. Eng. A, 1992, 149(2), p 203–216CrossRefGoogle Scholar
  18. 18.
    J. Gregg, H. Bhadeshia, and L.E. Svensson, Inoculation of Steel Welds with Non-metallic Particles, Mater. Sci. Eng. A, 1997, 223(1–2), p 146–157CrossRefGoogle Scholar
  19. 19.
    M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, and E. Rahimi, Effect of Ti-Containing Inclusions on the Nucleation of Acicular Ferrite and Mechanical Properties Of Multipass Weld Metals, Micron, 2013, 45, p 107–114CrossRefGoogle Scholar
  20. 20.
    G. Thewlis, J. Whiteman, and D. Senogles, Dynamics of Austenite to Ferrite Phase Transformation in Ferrous Weld Metals, Mater. Sci. Technol., 1997, 13(3), p 257–274CrossRefGoogle Scholar
  21. 21.
    Z. Zhang and R. Farrar, Role of Non-metallic Inclusions in Formation of Acicular Ferrite in Low Alloy Weld Metals, Mater. Sci. Technol., 1996, 12(3), p 237–260CrossRefGoogle Scholar
  22. 22.
    C.J. Zhang, L.N. Gao, and L.G. Zhu, Effect of Inclusion Size and Type on the Nucleation of Acicular Ferrite in High Strength Ship Plate Steel, ISIJ Int., 2018, 58(5), p 965–969CrossRefGoogle Scholar
  23. 23.
    J.H. Shim, Y. Cho, S. Chung, J.D. Shim, and D. Lee, Nucleation of Intragranular Ferrite at Ti2O3 Particle in Low Carbon Steel, Acta Mater., 1999, 47(9), p 2751–2760CrossRefGoogle Scholar
  24. 24.
    B. Wang, X. Liu, and G. Wang, Inclusion Characteristics and Acicular Ferrite Nucleation in Ti-Containing Weld Metals of X70 Pipeline Steel, Steel Res. Int., 2018, 89(2), p 1700316CrossRefGoogle Scholar
  25. 25.
    H. Liu, J. Feng, H. Fujii, and K. Nogi, Wear Characteristics of a WC–Co Tool in Friction Stir Welding of AC4A + 30vol% SiCp Composite, Int. J. Mach. Tool. Manuf., 2005, 45(14), p 1635–1639CrossRefGoogle Scholar
  26. 26.
    R. Ale, J. Rebello, and J. Charlier, A Metallographic Technique for Detecting Martensite-Austenite Constituents in the Weld Heat-Affected Zone of a Micro-Alloyed Steel, Mater. Charact., 1996, 37(2), p 89–93CrossRefGoogle Scholar
  27. 27.
    Standard Test Methods for Tension Testing of Metallic Materials, E8/E8M − 15a, ASTM Standard, 2015, p. 1–29Google Scholar
  28. 28.
    Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, E23 − 12c, ASTM Standard, 2012, p. 1–25Google Scholar
  29. 29.
    Standard Test Method for Microindentation Hardness of Materials, E384 − 16, ASTM Standard, 2016, p. 1–28Google Scholar
  30. 30.
    J.B. Ju, W.S. Kim, and J.I. Jang, Variations in DBTT and CTOD Within Weld Heat-Affected Zone of API, X65 Pipeline Steel, Mater. Sci. Eng. A, 2012, 546, p 258–262CrossRefGoogle Scholar
  31. 31.
    S. Barnes, A. Bhatti, A. Steuwer, R. Johnson, J. Altenkirch, and P. Withers, Friction Stir Welding in HSLA-65 Steel: Part I. Influence of Weld Speed and Tool Material on Microstructural Development, Metall. Mater. Trans. A, 2012, 43(7), p 2342–2355CrossRefGoogle Scholar
  32. 32.
    M. Sinfield, J. Lippold, B. Alexandrov, D. Forrest, in TWI Ltd., Abington, UK, 2008Google Scholar
  33. 33.
    A. Lambert-Perlade, A.-F. Gourgues, and A. Pineau, Austenite to Bainite Phase Transformation in the Heat-Affected Zone of a High Strength Low Alloy Steel, Acta Mater., 2004, 52(8), p 2337–2348CrossRefGoogle Scholar
  34. 34.
    J.C. Lippold, Welding metallurgy and weldability, Wiley, London, 2014, p 65Google Scholar
  35. 35.
    T. Zhang, Z. Li, F. Young, H.J. Kim, H. Li, H. Jing, and W. Tillmann, Global Progress on Welding Consumables for HSLA Steel, ISIJ Int., 2014, 54(7), p 1472–1484CrossRefGoogle Scholar
  36. 36.
    J. Wang, P. Van Der Wolk, and S. Van Der Zwaag, On the Influence of Alloying Elements on the Bainite Reaction in Low Alloy Steels During Continuous Cooling, J. Mater. Sci., 2000, 35(17), p 4393–4404CrossRefGoogle Scholar
  37. 37.
    J.H. Shim, Y.W. Cho, J.D. Shim, Y.J. Oh, J.S. Byun, and D.N. Lee, Effects of Si and Al on acicular ferrite formation in C-Mn steel, Metall. Mater. Trans. A, 2001, 32(1), p 75–83CrossRefGoogle Scholar
  38. 38.
    J.S. Byun, J.H. Shim, and Y.W. Cho, Influence of Mn on Microstructural Evolution in Ti-Killed C-Mn Steel, Scr. Mater., 2003, 48(4), p 449–454CrossRefGoogle Scholar
  39. 39.
    Z. Zhang and R. Farrar, Influence of Mn and Ni on the Microstructure and Toughness of C-Mn-Ni Weld Metals, Weld. J., 1997, 76(5), p 183Google Scholar
  40. 40.
    D. Crockett, J. Rhone, R. Young, and D. Noernberg, Design Considerations for Submerged arc Consumables Intended for the Manufacture of Line Pipe, Pipeline Technol., 1995, 1, p 151–162Google Scholar
  41. 41.
    G. Evans, The Effect of Nickel on the Microstructure and Properties of C-Mn All-Weld Metal Deposits, Weld. Res. Abroad, 1991, 37(2/3), p 70–83Google Scholar
  42. 42.
    B. Beidokhti, A. Koukabi, and A. Dolati, Influences of Titanium and Manganese on High Strength Low Alloy SAW Weld Metal Properties, Mater. Charact., 2009, 60(3), p 225–233CrossRefGoogle Scholar
  43. 43.
    Y. Peng, W. Chen, and Z. Xu, Study of High Toughness Ferrite Wire for Submerged Arc Welding of Pipeline Steel, Mater. Charact., 2001, 47(1), p 67–73CrossRefGoogle Scholar
  44. 44.
    Specification for Line Pipe, 5L, API Standard, 2012, p. 27–50Google Scholar
  45. 45.
    S. Araki, K. Fujii, D. Akama, T. Tsuchiyama, S. Takaki, T. Ohmura, and J. Takahashi, Effect of Low Temperature Aging on Hall-Petch Coefficient in Ferritic Steels Containing a Small Amount of Carbon and Nitrogen, Testu To Hagane, 2017, 103(8), p 491–497CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Rasoul Pouriamanesh
    • 1
  • Kamran Dehghani
    • 1
    Email author
  • Rudolf Vallant
    • 2
  • Norbert Enzinger
    • 2
  1. 1.Department of Mining and Metallurgical EngineeringAmirkabir University of TechnologyTehranIran
  2. 2.Institute of Material Science, Joining and FormingGraz University of TechnologyGrazAustria

Personalised recommendations