Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 11, pp 5788–5793 | Cite as

An Exceptional Synergy of High Strength, Ductility and Toughness in a Gradient-Structured Low-Carbon Steel

  • Yindong Shi
  • Lina Wang
  • Yulong Zhang
  • Hailong Xie
  • Yajun Zhao
Article
  • 62 Downloads

Abstract

Generally, the improvement in the strength comes at the cost of the ductility and toughness for most metallic materials. Here, an exceptional synergy of high strength (σy ~ 453.8 MPa), ductility (εf ~ 24.5%) and static toughness (Ur ~ 115.0 MJ/m3) is achieved in a low-carbon steel subjected to torsion deformation and annealing treatments, compared with that (σy ~ 282.4 MPa, εf ~ 27.3% and Ur ~ 102.9 MJ/m3) of its coarse-grained counterpart. The enhancement of mechanical properties is attributed to the formation of a specific gradient structure with a thickness of ~ 3 mm, that is, the ferrite size increases while the volume fraction of the pearlite decreases continuously with the depth from the sample surface to the core. The strengthening and toughening mechanisms of the gradient-structured low-carbon steel are also discussed.

Keywords

ductility gradient structure low-carbon steel strength torsion deformation 

Notes

Acknowledgments

The authors gratefully acknowledge the financial support of the Universities Science and Technology Research Projects in Hebei Province (No. QN2017032) and the Natural Science Foundation in Hebei Province (No. E2015402111).

References

  1. 1.
    K. Lu, The Future of Metals, Science, 2010, 328, p 319–320CrossRefGoogle Scholar
  2. 2.
    E. Ma and T. Zhu, Towards Strength–Ductility Synergy Through the Design of Heterogeneous Nanostructures in Metals, Mater. Today, 2017, 20, p 323–331CrossRefGoogle Scholar
  3. 3.
    X. Li, L. Lou, W. Song, G. Huang, F. Hou, Q. Zhang, H. Zhang, J. Xiao, B. Wen, and X. Zhang, Novel Bimorphological Anisotropic Bulk Nanocomposite Materials with High Energy Products, Adv. Mater., 2017, 29, p 1606430CrossRefGoogle Scholar
  4. 4.
    X. Li, L. Lou, W. Song, Q. Zhang, G. Huang, Y. Hua, H. Zhang, J. Xiao, B. Wen, and X. Zhang, Controllably Manipulating Three-Dimensional Hybrid Nanostructures for Bulk Nanocomposites with Large Energy Products, Nano Lett., 2017, 17, p 2985–2993CrossRefGoogle Scholar
  5. 5.
    T.H. Fang, W.L. Li, N.R. Tao, and K. Lu, Revealing Extraordinary Intrinsic Tensile Plasticity in Gradient Nano-grained Copper, Science, 2011, 331, p 1587–1590CrossRefGoogle Scholar
  6. 6.
    F. Yuan, P. Chen, Y. Feng, P. Jiang, and X. Wu, Strain Hardening Behaviors and Strain Rate Sensitivity of Gradient-Grained Fe Under Compression over a Wide Range of Strain Rates, Mech. Mater., 2016, 95, p 71–82CrossRefGoogle Scholar
  7. 7.
    J. Moering, X. Ma, J. Malkin, M. Yang, Y. Zhu, and S. Mathaudhu, Synergetic Strengthening Far Beyond Rule of Mixtures in Gradient Structured Aluminum Rod, Scr. Mater., 2016, 122, p 106–109CrossRefGoogle Scholar
  8. 8.
    X. Wu, P. Jiang, L. Chen, F. Yuan, and Y. Zhu, Extraordinary Strain Hardening by Gradient Structure, PNAS, 2014, 111, p 7197–7201CrossRefGoogle Scholar
  9. 9.
    X. Liu, K. Wu, G. Wu, Y. Gao, L. Zhu, Y. Lu, and J. Lu, High Strength and High Ductility Copper Obtained by Topologically Controlled Planar Heterogeneous Structures, Scr. Mater., 2016, 124, p 103–107CrossRefGoogle Scholar
  10. 10.
    Y. Wei, Y. Li, L. Zhu, Y. Liu, X. Lei, G. Wang, Y. Wu, Z. Mi, J. Liu, H. Wang, and H. Gao, Evading the Strength–Ductility Trade-Off Dilemma in Steel Through Gradient Hierarchical Nanotwins, Nat. Commun., 2014, 5, p 1–8Google Scholar
  11. 11.
    X.L. Wu, P. Jiang, L. Chen, J.F. Zhang, F.P. Yuan, and Y.T. Zhu, Synergetic Strengthening by Gradient Structure, Mater. Res. Lett., 2014, 2, p 185–191CrossRefGoogle Scholar
  12. 12.
    K. Lu, Making Strong Nanomaterials Ductile with Gradients, Science, 2014, 345, p 1455–1456CrossRefGoogle Scholar
  13. 13.
    M. Yang, Y. Pan, F. Yuan, Y. Zhu, and X. Wu, Back Stress Strengthening and Strain Hardening in Gradient Structure, Mater. Res. Lett., 2016, 4, p 145–151CrossRefGoogle Scholar
  14. 14.
    K. Lu, Gradient Nanostructured Materials, Acta Metall. Sin., 2015, 51, p 1–10Google Scholar
  15. 15.
    E. Ma and T. Zhu, Towards Strength–Ductility Synergy Through the Design of Heterogeneous Nanostructures in Metals, Mater. Today, 2017, 20, p 323–331CrossRefGoogle Scholar
  16. 16.
    B. Song, H. Zhao, L. Chai, N. Guo, H. Pan, H. Chen, and R. Xin, Preparation and Characterization of Mg Alloy Rods with Gradient Microstructure by Torsion Deformation, Met. Mater. Int., 2016, 22, p 887–896CrossRefGoogle Scholar
  17. 17.
    N. Guo, B. Song, H. Yu, R. Xin, B. Wang, and T. Liu, Enhancing Tensile Strength of Cu by Introducing Gradient Microstructures via a Simple Torsion Deformation, Mater. Des., 2016, 90, p 545–550CrossRefGoogle Scholar
  18. 18.
    N. Guo, B. Song, C. Guo, R. Xin, and Q. Liu, Improving Tensile and Compressive Properties of Magnesium Alloy Rods via a Simple Pre-torsion Deformation, Mater. Des., 2015, 83, p 270–275CrossRefGoogle Scholar
  19. 19.
    M.R. Jandaghi, H. Pouraliakbar, G. Khalaj, M.J. Khalaj, and A. Heidarzadeh, Study on the Post-rolling Direction of Severely Plastic Deformed Aluminum-Manganese-Silicon Alloy, Arch. Civ. Mech. Eng., 2016, 16, p 876–887CrossRefGoogle Scholar
  20. 20.
    H. Pouraliakbar, M.R. Jandaghi, and G. Khalaj, Constrained Groove Pressing and Subsequent Annealing of Al-Mn-Si Alloy: Microstructure Evolutions, Crystallographic Transformations, Mechanical Properties, Electrical Conductivity and Corrosion Resistance, Mater. Des., 2017, 124, p 34–46CrossRefGoogle Scholar
  21. 21.
    H. Pouraliakbar, M.R. Jandaghi, S.J.M. Baygi, and G. Khalaj, Microanalysis of Crystallographic Characteristics and Structural Transformations in SPDed AlMnSi Alloy by Dual-Straining, J. Alloys Compd., 2017, 896, p 1189–1198CrossRefGoogle Scholar
  22. 22.
    B. Song, N. Guo, R. Xin, H. Pan, and C. Guo, Strengthening and Toughening of Extruded Magnesium Alloy Rods by Combining Pre-torsion Deformation with Subsequent Annealing, Mater. Sci. Eng. A, 2016, 650, p 300–304CrossRefGoogle Scholar
  23. 23.
    Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Ultra-Fine-Grained Pure Copper, Adv. Mater., 2006, 18, p 2949–2953CrossRefGoogle Scholar
  24. 24.
    Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys, Adv. Mater., 2006, 18, p 2280–2283CrossRefGoogle Scholar
  25. 25.
    P. Bazarnik, Y. Huang, M. Lewandowska, and T.G. Langdon, Structural Impact on the Hall–Petch Relationship in an Al-5Mg Alloy Processed by High-Pressure Torsion, Mater. Sci. Eng. A, 2015, 626, p 9–15CrossRefGoogle Scholar
  26. 26.
    P. Lehto, H. Remes, T. Saukkonen, H. Hänninen, and J. Romanoff, Influence of Grain Size Distribution on the Hall–Petch Relationship of Welded Structural Steel, Mater. Sci. Eng. A, 2014, 592, p 28–39CrossRefGoogle Scholar
  27. 27.
    X.D. Zhang, A. Godfrey, X. Huang, N. Hansen, and Q. Liu, Microstructure and Strengthening Mechanisms in Cold-Drawn Pearlitic Steel Wire, Acta Mater., 2011, 59, p 3422–3430CrossRefGoogle Scholar
  28. 28.
    N. Guo, D. Li, H. Yu, R. Xin, Z. Zhang, X. Li, C. Liu, B. Song, and L. Chai, Annealing Behavior of Gradient Structured Copper and Its Effect on Mechanical Properties, Mater. Sci. Eng. A, 2017, 702, p 331–342CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.College of Materials Science and TechnologyHebei University of EngineeringHandanPeople’s Republic of China
  2. 2.Mechanics Lab, School of Civil EngineeringHebei University of EngineeringHandanPeople’s Republic of China
  3. 3.School of Civil and TransportationHebei University of TechnologyTianjinPeople’s Republic of China

Personalised recommendations