Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 11, pp 5778–5787 | Cite as

Effect of Surface Treatment on Bio-corrosion in Aluminum Alloy 2024-T3

  • K. Nishchitha
  • M. K. Deepa
  • B. G. Prakashaiah
  • J. N. Balaraju
  • B. E. Amitha rani
Article
  • 52 Downloads

Abstract

Bio-corrosion is one of the major problems faced in any engineering/aerospace industry. The present study focuses on understanding the effect of surface treatment on AA2024-T3 on bio-corrosion in aircraft fuel tanks. The microbial attack on aluminum alloy (2024-T3) in aircraft fuel tanks by Pseudomonas aeruginosa was studied. Substrates with (1) chromate-free surface treatment (anodization; 2) Ormosil coatings doped with inhibitors/derivatives known for antimicrobial properties were evaluated for their bio-corrosion protection efficiency as compared to bare coupons. The coupons were immersed in aviation fuel spiked with the test culture. The changes in chemical parameters of test solution like pH were monitored periodically. A probable relationship between number of organisms, changes in pH and the extracellular protein (hypothesized to be produced by organisms) were evaluated. Our studies indicated that pH did not appear to play a crucial role in biofilm formation. Surface morphology of bare and anodized AA2024-T3 coupons before and after electrochemical impedance studies (EIS) was analyzed using FE-SEM. Anodized samples with least icorr value of (0.075 × 10−6 A cm−2) and corrosion rate of (0.12 × 10−2 mm/y) after 60 days showed distinct corrosion protection than bare and the coated samples. Additional evidence in support of corrosion protection efficiency of anodized was obtained by the biofilm barrier efficiency of 98.94%.

Keywords

AA2024-T3 anodized aircraft fuel tank bio-corrosion biofilm P. aeruginosa 

Notes

Acknowledgments

The authors would like to thank the Director, NAL, and Head, SED, for their support. The work forms a part of the M.Tech dissertation work of the author K. Nishchitha. The authors also thank Mr. Siju for the FE-SEM images.

References

  1. 1.
    I.B. Beech and J. Sunner, Biocorrosion: Towards Understanding Interactions Between Biofilms and Metals, Curr. Opi. Biotechnol., 2004, 15(3), p 181–186CrossRefGoogle Scholar
  2. 2.
    N.I. Hendey, Some Observations on Cladosporium resinae as a Fuel Contaminant and Its Possible Role in the Corrosion of Aluminium Alloy Fuel Tanks, Trans. Brit. Mycol. Soc., 1964, 47(4), p 467–475CrossRefGoogle Scholar
  3. 3.
    H. Li, D. Liu, Y. Zhao et al., The Influence of Zn Content on the Corrosion and Wear Performance of Mg-Zn-Ca Alloy in Simulated Body Fluid, J. Mater. Eng. Perform., 2016, 25, p 3890–3895CrossRefGoogle Scholar
  4. 4.
    Y. El Mendili, A. Abdelouas, and J.F. Bardeau, The Corrosion Behavior of Carbon Steel in Sulfide Aqueous Media at 30 °C, J. Mater. Eng. Perform., 2014, 23, p 1350–1357CrossRefGoogle Scholar
  5. 5.
    R. Sandoval-Jabalera, E. Arias-del Campo, J.G. Chacón-Nava et al., Corrosion Behavior of Engineering Alloys in Synthetic Wastewater, J. Mater. Eng. Perform., 2006, 15(1), p 53–58CrossRefGoogle Scholar
  6. 6.
    R.B. Srivastava, M. Awasthi, M.C. Upreti, and G.N. Mathur, Studies on Aureobasidium pullulans Forming Biofilm on High Strength Aluminium Alloy, a Structural Component, in Aircraft Fuel Tanks, Indian J. Eng. Mater. Sci., 2006, 13(2), p 135–139Google Scholar
  7. 7.
    N.D. Vejar, M.I. Azocar, L.A. Tamayo, E. Gonzalez, J. Pavez, M. Gulppi, J.H. Zagal, X. Zhou, F. Santibanez, G.E. Thompson, and M.A. Paez, Antibiofouling Properties of Sol–Gel Type Polymers for Aluminium Alloys: Biocorrosion Protection Against Pseudomonas aeruginosa, Int. J. Electrochem. Sci., 2013, 8, p 12062–12077Google Scholar
  8. 8.
    S. Baeza, N. Vejar, M. Gulppi, M. Azocar, F. Melo et al., New Evidence on the Role of Catalase in Escherichia Coli-Mediated Biocorrosion, Corros. Sci., 2013, 67, p 32–41CrossRefGoogle Scholar
  9. 9.
    E.S. Ayllon and B.M. Rosales, Corrosion of AA7075 Aluminium Alloy in Media Contaminated with Cladosporium resinae, Corros. Sci., 1988, 44(9), p 638–643CrossRefGoogle Scholar
  10. 10.
    R.B. Srivastava, M. Awasthi, M.C. Upreti, and G.N. Mathur, Biosusceptibility Evaluations of Protective Sealants Used in Aircraft Fuel Tanks, Indian J. Eng. Mater. Sci., 2005, 12, p 241–247Google Scholar
  11. 11.
    A. Rajasekar and Y.P. Ting, Role of Inorganic and Organic Medium in the Corrosion Behavior of Bacillus megaterium and Pseudomonas sp. in Stainless Steel SS 304, Ind. Eng. Chem. Res., 2011, 50(22), p 12534–12541CrossRefGoogle Scholar
  12. 12.
    S. Bayoudh, A. Othmane, L. Ponsonnet, and H.B. Ouada, Electrical Detection and Characterization of Bacterial Adhesion Using Electrochemical Impedance Spectroscopy-Based Flow Chamber, Colloid Surface A, 2008, 318(1), p 291–300CrossRefGoogle Scholar
  13. 13.
    A.J. Davenport and H.S. Isaacs, Glancing Angle X-ray Studies of Oxide Films, Corros. Sci., 1990, 31, p 105–110CrossRefGoogle Scholar
  14. 14.
    L. Domingues, J.C.S. Fernandes, M.D.C. Belo, M.G.S. Ferreira, and L. Guerra-Rosa, Anodising of Al 2024-T3 in a Modified Sulphuric Acid/Boric Acid Bath for Aeronautical Applications, Corros. Sci., 2003, 45(1), p 149–160CrossRefGoogle Scholar
  15. 15.
    D.U. Nan, W. Shuai-xing, Z. Qing, and S.Z. Song, Effects of Boric Acid on Microstructure and Corrosion Resistance of Boric/Sulfuric Acid Anodic Film on 7050 Aluminium Alloy, Trans. Nonferrous Met. Soc., 2012, 22(7), p 1655–1660CrossRefGoogle Scholar
  16. 16.
    F. Keller, M.S. Hunter, and D.L. Robinson, Structural Features of Oxide Coatings on Aluminium, J. Electrochem. Soc., 1953, 100(9), p 411–419CrossRefGoogle Scholar
  17. 17.
    S.J. Yuan, S.O. Pehkonen, Y.P. Ting, E.T. Kang, and K.G. Neoh, Corrosion Behavior of Type 304 Stainless Steel in a Simulated Seawater-Based Medium in the Presence and Absence of Aerobic Pseudomonas NCIMB 2021 Bacteria, Ind. Eng. Chem. Res., 2008, 47(9), p 3008–3020CrossRefGoogle Scholar
  18. 18.
    B.V. Suma, N.N. Natesh, C.H.S. Venkataramana, J. Jays, and V. Madhavan, Synthesis and Antibacterial of Some New 1,2,3 Benzotriazoles Derivatives Containing Pyrazolidinedione Moieties, Int. J. Pharm Pharm Sci., 2012, 4(1), p 169–173Google Scholar
  19. 19.
    S. Srisung, T. Suksrichavalit, S. Prachayasittikul, S. Ruchirawat, and V. Prachayasittikul, Antimicrobial Activity of 8-Hydroxyquinoline and Transition Metal Complexes, Int. J. Pharmacol., 2013, 9(2), p 170–175CrossRefGoogle Scholar
  20. 20.
    B. Li and B.E. Logan, Bacterial Adhesion to Glass and Metal-Oxide Surfaces, Colloid Surface B, 2004, 36(2), p 81–90CrossRefGoogle Scholar
  21. 21.
    J.N. Balaraju, A. Srinivasan, G. Yoganandan, V.K.W. Grips, and K.S. Rajam, Effect of Mn/Mo Incorporated Oxide Layer on the Corrosion Behaviour of AA 2024 Alloy, Corros. Sci., 2011, 53(12), p 4084–4092CrossRefGoogle Scholar
  22. 22.
    T.L. Metroke and A. Apblett, Effect of Solvent Dilution on Corrosion Protective Properties of Ormosil Coatings on 2024-T3 Aluminium Alloy, Prog. Org. Coat., 2004, 51(1), p 36–46CrossRefGoogle Scholar
  23. 23.
    D.G. Shchukin, M. Zheludkevich, K. Yasakau, S. Lamaka, M.G.S. Ferreira, and H. Möhwald, Layer-by-Layer Assembled Nanocontainers for Self-Healing Corrosion Protection, Adv. Mater., 2006, 18(13), p 1672–1678CrossRefGoogle Scholar
  24. 24.
    B.E. Amitha Rani, M. Somaiah, and M. Poddar, Scratch Cell Test: A Simple, Cost Effective Screening Tool to Evaluate Self-Healing in Anti-Corrosion Coatings, J. Mater. Eng. Perform., 2014, 23(9), p 3328–3335CrossRefGoogle Scholar
  25. 25.
    M.M. Bradford, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding, Anal. Biochem., 1976, 254(1–2), p 248–254CrossRefGoogle Scholar
  26. 26.
    I.A. Kartsonakis, P. Kontogiani, G.S. Pappas, and G. Kordas, Photocatalytic Action of Cerium Molybdate and Iron-Titanium Oxide Hollow Nanospheres on Escherichia coli, J. Nanopart. Res., 2013, 15(6), p 1–10CrossRefGoogle Scholar
  27. 27.
    V. Wong, K. Levi, B. Baddal, J. Turton, and T.C. Boswell, Spread of Pseudomonas fluorescens Due to Contaminated Drinking Water in a Bone Marrow Transplant Unit, J. Clin. Microbiol., 2011, 49(6), p 2093–2096CrossRefGoogle Scholar
  28. 28.
    T.M.P. Nguyen, X. Sheng, Y.P. Ting, and S.O. Pehkonen, Biocorrosion of AISI, 304 Stainless Steel by Desulfo wibrio desulfuricans in Seawater, Ind. Eng. Chem. Res., 2008, 47(14), p 4703–4711CrossRefGoogle Scholar
  29. 29.
    L. Abdoli, J. Huang, and H. Li, Electrochemical Corrosion Behaviours of Aluminium-Based Marine Coatings in the Presence of Escherichia coli Bacterial Biofilm, Mater. Chem. Phys., 2016, 173, p 62–69CrossRefGoogle Scholar
  30. 30.
    S.M. Bhola, F.M. Alabbas, R. Bhola, J.R. Spear, B. Mishra, D.L. Olson, and A.E. Kakpovbia, Neem Extract as an Inhibitor for Biocorrosion Influenced by Sulfate Reducing Bacteria: A Preliminary Investigation, Eng. Fail. Anal., 2014, 36, p 92–103CrossRefGoogle Scholar
  31. 31.
    H.A. Videla and L.K. Herrera, Microbiologically Influenced Corrosion: Looking to the Future, Int. Microbio., 2005, 8(3), p 169–180Google Scholar
  32. 32.
    A. Rajasekar, B. Anandkumar, S. Maruthamuthu, Y.P. Ting, and K.S.M. Rahman, Characterization of Corrosive Bacterial Consortia Isolated from Petroleum-Product-Transporting Pipelines, Appl. Microbiol. Biotechnol., 2010, 85(4), p 1175–1188CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • K. Nishchitha
    • 1
  • M. K. Deepa
    • 1
  • B. G. Prakashaiah
    • 1
  • J. N. Balaraju
    • 1
  • B. E. Amitha rani
    • 1
  1. 1.Surface Engineering DivisionCSIR-NALBengaluruIndia

Personalised recommendations