Journal of Materials Engineering and Performance

, Volume 27, Issue 11, pp 6040–6048 | Cite as

Mechanical and Tribological Behavior of ZrB2-TiB2 System Prepared by Mechanical Activation Spark Plasma Sintering Technique

  • S. Mondal
  • S. ChakrabortyEmail author
  • S. Das


ZrB2-TiB2 system among varying amount of TiB2 loading (5, 10, 15, 20 and 30 wt.%) was prepared by mechanical activation spark plasma sintering at 2100 °C for 15-min dwell time under 50 MPa uniaxial pressure in argon atmosphere. The effect of the TiB2 loading on properties like physical, mechanical and tribological of the prepared samples was studied and evaluated with monolithic ZrB2 ceramic. Finally, almost fully dense samples (> 96% of theoretical density) were fabricated. Microstructural observation and XRD phase analysis of sintered compact revealed that TiB2 completely went into the ZrB2 structure by formation of solid solution with ZrB2 phase. ZrB2-TiB2 (30 wt.%) showed the highest Vickers micro-hardness (HV) of 20.64 GPa at 10 N load. On addition of TiB2, the fracture toughness of the ZrB2-TiB2 improved up to 4.69 ± 0.43 MPa m1/2 over monolithic ZrB2 at 10 N load. At 10 N load, the scratch resistance coefficient, wear rate and wear resistance coefficient of ZrB2-TiB2 (30 wt.%) reached a lowest value of 0.32, 0.35 mm3/N m and 0.008, respectively, at 10 N load than other ZrB2 compositions.


mechanical property spark plasma technique titanium diboride tribological property UHTC zirconium diboride 



The author (1) likes to communicate his sincere gratefulness to the Director, CSIR-CGCRI for permission of the M. Tech work. The author (2) is also grateful to CSIR, New Delhi for providing fund under 12th FYP program (CERMESA Project). Acknowledgement is also owing to AMMCD, NOCCD for supporting the fabication of samples and testing.


  1. 1.
    S.Q. Guo, Densification of ZrB2-Based Composites and Their Mechanical and Physical Properties: A Review, J. Eur. Ceram. Soc., 2009, 29, p 995–1011CrossRefGoogle Scholar
  2. 2.
    E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, and I. Talmy, UHTCs: Ultra-high Temperature Ceramic Materials for Extreme Environment Applications, Electrochem. Soc. Interface, 2007, 16(4), p 30–36Google Scholar
  3. 3.
    F. Monteverde, A. Bellosi, and L. Scatteia, Processing and Properties of Ultra-high Temperature Ceramics for space applications, Mater. Sci. Eng., A, 2008, 485, p 415–421CrossRefGoogle Scholar
  4. 4.
    H. Wang, B. Fan, L. Feng, D. Chen, H. Lu, H. Xu, C.A. Wang, and R. Zhang, The Fabrication and Mechanical Properties of SiC/ZrB2 Laminated Ceramic Composite Prepared by Spark Plasma Sintering, Ceram. Int., 2012, 38, p 5015–5022CrossRefGoogle Scholar
  5. 5.
    W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski, Refractory Diborides of Zirconium and Hafnium, J. Am. Ceram. Soc., 2007, 90(5), p 1347–1364CrossRefGoogle Scholar
  6. 6.
    C. Mroz, Annual Mineral Review: Zirconium Diboride, Am. Ceram. Soc. Bull., 1995, 74, p 164–165Google Scholar
  7. 7.
    C. Mroz, Annual Mineral Review: Zirconium Diboride, Am. Ceram. Soc. Bull., 1994, 73, p 141–142Google Scholar
  8. 8.
    J.K. Sonber and A.K. Suri, Synthesis and Consolidation of Zirconium Diboride: Review, Int. J. Adv. Appl. Ceram., 2011, 110(6), p 321–332CrossRefGoogle Scholar
  9. 9.
    R. Kumar, M.C. Mishra, B.K. Sharma, V. Sharma, J.E. Lowther, V. Vyas, and G. Sharma, Electronic Structure and Elastic Properties of TiB2 and ZrB2, Comput. Mater. Sci., 2012, 61, p 150–157CrossRefGoogle Scholar
  10. 10.
    A.K. Kuriakose and J.L. Margrave, The Oxidation Kinetics of Zirconium Diboride and Zirconium Carbide at High Temperatures, J. Electrochem. Soc., 1964, 111, p 827–831CrossRefGoogle Scholar
  11. 11.
    D. Debnath, S. Chakraborty, A.R. Mallick, R.K. Gupta, A. Ranjan, and P.K. Das, Mechanical, Tribological and Thermal Properties of Hot Pressed ZrB2-SiC Composite with SiC of Different Morphology, Int. J. Adv. Appl. Ceram., 2015, 114(1), p 45–54CrossRefGoogle Scholar
  12. 12.
    H.L. Wang, C.A. Wang, D.L. Chen, H.L. Xu, H.X. Lu, R. Jhang, and L. Feng, Preparation and Characterization of ZrB2-SiC Ultra High Temperature Ceramics by Microwave Sintering, Master Sci. China, 2010, 4(3), p 276–280CrossRefGoogle Scholar
  13. 13.
    S. Chakraborty, D. Debnath, A.R. Mallick, and P.K. Das, Mechanical and Thermal Properties of Hot Pressed ZrB2 System with TiB2, Int. J. Refract. Met. Hard Mater., 2014, 46, p 35–42CrossRefGoogle Scholar
  14. 14.
    S. Chakraborty, D. Debnath, A.R. Mallick, and P.K. Das, Mechanical, Tribological, and Thermal Properties of Hot-Pressed ZrB2-B4C Composite, Int. J. Appl. Ceram. Technol., 2014, 2, p 1–9Google Scholar
  15. 15.
    B. Liu, J. Wang, and G. Liu, Thermal Shock Properties of ZrB2-SiCp-Graphite and ZrB2-SiCp-AlN Ceramic Matrix Composite Material, Open Mater. Sci. J., 2011, 5, p 199–202CrossRefGoogle Scholar
  16. 16.
    F. Monteverde, A. Bellosi, and S. Guicciardi, Processing and Properties of Zirconium Diboride Based Composites, J. Eur. Ceram. Soc., 2002, 22, p 279–288CrossRefGoogle Scholar
  17. 17.
    F. Monteverde and A. Bellosi, Effect of the Addition of Silicon Nitride on Sintering Behaviour and Microstructure of Zirconium Diboride, Scripta Mater., 2002, 46, p 223–228CrossRefGoogle Scholar
  18. 18.
    G.B. Raju, B. Basu, N.H. Tak, and S.J. Cho, Temperature Dependent Hardness and Strength Properties of TiB2 with TiSi2 Sinter-Aid, J. Eur. Ceram. Soc., 2009, 29, p 2119–2128CrossRefGoogle Scholar
  19. 19.
    B. Basu, G.B. Raju, and A.K. Suri, Processing and Properties of Monolithic TiB2 Based Materials, Int. Mater. Rev., 2006, 51, p 352–374CrossRefGoogle Scholar
  20. 20.
    A. Mukhopadhyay, G.B. Raju, B. Basu, and A.K. Suri, Correlation Between Phase Evolution, Mechanical Properties and Instrumented Indentation Response of TiB2-Based Ceramics, J. Eur. Ceram. Soc., 2009, 29, p 505–516CrossRefGoogle Scholar
  21. 21.
    Z.H. Zhang, X.B. Shen, F.C. Wang, S.K. Lee, and L. Wang, Densification Behaviour and Mechanical Properties of the Spark Plasma Sintered Monolithic TiB2 Ceramics, Mater. Sci. Eng., A, 2010, 527, p 5947–5951CrossRefGoogle Scholar
  22. 22.
    C. Yuhong, W. Laner, S. Wenzhou, J. Yong, and L. Youjun, SiC-TiB2 Composite Densified by Pressureless Liquid-Phase Sintering, Key Eng. Mater., 2013, 544, p 48–51CrossRefGoogle Scholar
  23. 23.
    D.S. King, W.G. Fahrenholtz, and G.E. Hilmas, Silicon Carbide-Titanium Diboride Ceramic Composites, J. Eur. Ceram. Soc., 2013, 33, p 2943–2951CrossRefGoogle Scholar
  24. 24.
    P. Wyzga, L. Jaworska, M. Bucko, J. Bonarski, P. Putyra, and P. Figiel, TiN-TiB2 Composites Prepared by Various Sintering Techniques, Int. J. Refract. Met. Hard Mater., 2013, 4, p 571–576CrossRefGoogle Scholar
  25. 25.
    S.G. Huang, K. Vanmeensel, O.J.A. Malek, O. Van der Biest, and J. Vleugels, Microstructure and Mechanical Properties of Pulsed Electric Current Sintered B4C-TiB2 Composites, Mater. Sci. Eng., A, 2011, 528, p 1302–1309CrossRefGoogle Scholar
  26. 26.
    S. Chakraborty, A.R. Mallick, D. Debnath, and P.K. Das, Densification, Mechanical and Tribological Properties of ZrB2 by SPS: Effect of Pulsed Current, Int. J. Refract. Met. Hard Mater., 2015, 48, p 150–156CrossRefGoogle Scholar
  27. 27.
    B. Lawn, Fracture of Brittle Solids, Cambridge University Press, Cambridge, 1993, p 303CrossRefGoogle Scholar
  28. 28.
    D. Radev and D. Klissurski, Mechanochemical Synthesis and SHS of Diborides of Titanium and Zirconium, J. Mater. Synth. Proc., 2001, 9(3), p 131–136CrossRefGoogle Scholar
  29. 29.
    T.A. Parthasarathy, R.A. Rapp, M. Opeka, and R.J. Kerans, A Model for the Oxidation of ZrB2, HfB2 and TiB2, Acta Mater., 2007, 55(17), p 5999–6010CrossRefGoogle Scholar
  30. 30.
    W.A. Zdaniewsky, Solid Solubility Effect on Properties of Titanium Diboride, J. Am. Ceram. Soc., 1987, 70(11), p 793–797CrossRefGoogle Scholar
  31. 31.
    S. Baik and P.F. Becher, Effect of Oxygen Contamination on Densification of TiB2, J. Am. Ceram. Soc., 1987, 70(8), p 527–530CrossRefGoogle Scholar
  32. 32.
    R. Telle, L.S. Sigl, and K. Takagi, Boride-Based Hard Materials, Chapter: 7, Handbook of Ceramic Hard Materials, R. Riedel, Ed., Wiley, Weinheim, 2000, p 802–945CrossRefGoogle Scholar
  33. 33.
    J. Yin, H. Zhang, Y.J. Yan, Z.R. Huang, X.J. Liu, and D.L. Jiang, High Toughness in Pressureless Densified ZrB2-Based Composites Co-doped with Boron-Titanium Carbides, Scripta Mater., 2012, 66, p 523–526CrossRefGoogle Scholar
  34. 34.
    C. Mroz, Processing and Properties of Microcomposite TiZrC and TiZrB2 Materials, Ceram. Eng. Sci. Proc., 1993, 14(9–10), p 725–735CrossRefGoogle Scholar
  35. 35.
    G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I. Direct Crack Measurements, J. Am. Ceram. Soc., 1981, 64, p 533–538CrossRefGoogle Scholar
  36. 36.
    B.R. Lawn, A.G. Evans, and D.B. Marshall, Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System, J. Am. Ceram. Soc., 1980, 63, p 574–581CrossRefGoogle Scholar
  37. 37.
    Z. Balak, M.S. Asl, M. Azizieh, H. Kafashan, and R. Hayati, Effect of Different Additives and Open Porosity on Fracture Toughness of ZrB2-SiC-Based Composites Prepared by SPS, Ceram. Int., 2017, 43, p 2209–2220CrossRefGoogle Scholar
  38. 38.
    J. Yin, Z. Huang, X. Liu, Y. Yan, H. Zhang, and D. Jiang, Mechanical Properties and In-situ Toughening Mechanism of Pressurelessly Densified ZrB2-TiB2 Ceramic Composites, Mater. Sci. Eng., A, 2013, 565, p 414–419CrossRefGoogle Scholar
  39. 39.
    B. Li, Effect of ZrB2 and SiC Addition on TiB2-Based Ceramic Composites Prepared by Spark Plasma Sintering, J. Refract. Met. Hard Mater., 2014, 46, p 84–89CrossRefGoogle Scholar
  40. 40.
    P.G. Roa, M. Iwasa, T. Tanaka, I. Kondoh, and T. Inoue, Preparation and Mechanical Properties of Al2O3-15wt.%ZrO2, Script Mater., 2003, 48(4), p 437–441CrossRefGoogle Scholar
  41. 41.
    I.L. Tangen, Y. Yu, T. Grande, T. Mokkelbost, R. Hoier, and M.A. Einarsrud, Preparation and Characterisation of Aluminium Nitride-Silicon Carbide Composites, Ceram. Int., 2004, 30(6), p 931–938CrossRefGoogle Scholar
  42. 42.
    I.M. Ogilvy, C.M. Perrott, and J.W. Suiter, On the Indentation Fracture of Cemented Carbide Part 1-Survey of Operative Fracture Modes, Wear, 1977, 43(2), p 239–252CrossRefGoogle Scholar
  43. 43.
    C. Yue, W. Liu, L. Zhang, T. Zhang, and Y. Chen, Fracture Toughness and Toughening Mechanisms in a (ZrB2-SiC) Composite Reinforced with Boron Nitride Nanotubes and Boron Nitride Nanoplatelets, Scr. Mater., 2013, 68, p 579–582CrossRefGoogle Scholar
  44. 44.
    Y.J. He, A.J.A. Winnubst, D.J. Schipper, A.J. Burggraaf, and H. Verweij, Effects of a Second Phase on the Tribological Properties of Al2O3 and ZrO2 Ceramics, Wear, 1997, 210(1–2), p 178–187CrossRefGoogle Scholar
  45. 45.
    K. Holmberg, A. Laukkanen, H. Ronkainen, K. Wallin, S. Varjus, and J. Koskinen, Tribological Contact Analysis of a Rigid Ball Sliding on a Hard Coated Surface Part I: Modelling Stresses and Strains, Surf. Coat. Technol., 2006, 200, p 3793–3809CrossRefGoogle Scholar
  46. 46.
    S.J. Bull, Failure Modes in Scratch Adhesion Testing, Surf. Coat. Technol., 1991, 50, p 25–32CrossRefGoogle Scholar
  47. 47.
    B. Basu and M. Kalin, Tribology of Ceramics and Composites: A Materials Science Perspective, Chapter 6, Wiley, Hoboken, 2011, p 60–67Google Scholar
  48. 48.
    M. Surender, B. Basu, and R. Balasubramaniam, Wear Characterization of Electrodeposited Ni-WC Composite Coatings, Tribol. Int., 2004, 37, p 743–749CrossRefGoogle Scholar
  49. 49.
    M. Kalin, Influence of Flash Temperatures on the Tribological Behaviour in Low-Speed Sliding: A Review, Mater. Sci. Eng., A, 2004, 374, p 390–397CrossRefGoogle Scholar
  50. 50.
    A. Ramalho and J.C. Miranda, The Relationship Between Wear and Dissipated Energy in Sliding Systems, Wear, 2006, 260, p 361–367CrossRefGoogle Scholar
  51. 51.
    M. Amiri and M.M. Khonsari, On the Thermodynamics of Friction and Wear—A Review, Entropy, 2010, 12, p 1021–1049CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentKalyani Government Engineering CollegeKalyaniIndia
  2. 2.CSIR-Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations