Advertisement

Corrosion Resistance of Cu-Ni-Si Alloy Under High-Temperature, High-Pressure H2S and Cl Environments

  • Yuanyuan Shen
  • Yaohua DongEmail author
  • Hengding Li
  • Qinghong Li
  • Li Zhang
  • Lihua Dong
  • Yansheng Yin
Article
  • 25 Downloads

Abstract

In this study, Cu-Ni-Si alloy was subjected to corrosion resistance tests under simulated high-temperature, high-pressure H2S and Cl environments. The corrosion rates, electrochemical performance, surface morphologies, and chemical compositions of the Cu-Ni-Si alloy after corrosion were analyzed by the mass loss method, electrochemical impedance spectroscopy, scanning electron microscopy, energy-dispersive x-ray spectrometry, and x-ray diffraction. The results showed that, at the initial stage of corrosion, because of the loose corrosion product layer initially formed on the surface, a high corrosion rate was observed for the Cu-Ni-Si alloy under high-temperature, high-pressure environments. With the progress of corrosion, the corrosion rate gradually decreased and reached a steady state. Because at the later stage, a passive film was formed on the alloy surface, further inhibiting the corrosion of the alloy and improved its corrosion resistance. The Cu-Ni-Si alloy exhibited good corrosion resistance under high-temperature, high-pressure H2S and Cl environments.

Keywords

Cl corrosion resistance Cu-Ni-Si alloy high pressure high temperature H2

Notes

Acknowledgments

The authors acknowledge the financial support of the National Key Research and Development Program (No. 2016YFB0300700); National Natural Science Foundation (Nos. 51609133 and 5162195); and the China Postdoctoral Science Foundation (No. 2017M620153).

References

  1. 1.
    M.C. Suárez-Arriaga, J. Bundschuh, and F. Samaniego, Assessment of Submarine Geothermal Resources and Development of Tools to Quantify Their Energy Potentials for Environmentally Sustainable Development, J. Clean. Prod., 2014, 83, p 21–32CrossRefGoogle Scholar
  2. 2.
    M. Ren, J.P. Chen, and S. Zhang, Metallogenic Information Extraction and Quantitative Prediction Process of Seafloor Massive Sulfide Resources in the Southwest Indian Ocean, Ore Geol. Rev., 2016, 76, p 108–121CrossRefGoogle Scholar
  3. 3.
    C.G. Wheat, A.T. Fisher, J.M. Manus, S.M. Hulme, and B.N. Orcutt, Cool Seafloor Hydrothermal Springs Reveal Global Geochemical Fluxes, Earth Planet. Sci. Lett., 2017, 476, p 179–188CrossRefGoogle Scholar
  4. 4.
    V.M. Dekov, L. Bindi, G. Burgaud, S. Petersen, D. Asael, V. Rédou, Y. Fouquet, and B. Pracejus, Inorganic and Biogenic As-Sulfide Precipitation at Seafloor Hydrothermal Fields, Mar. Geol., 2013, 342, p 28–38CrossRefGoogle Scholar
  5. 5.
    S. Gollner, B. Govenar, P.M. Arbizu, S. Mills, N.L. Bris, M. Weinbauer, T.M. Shank, and M. Bright, Difference in Recovery Between Deep-Sea Hydrothermal Vent and Vent-Proximate Communities After a Volcanic Eruption, Deep-Sea Res. Part I, 2015, 106(12), p 167–182CrossRefGoogle Scholar
  6. 6.
    A. Khripounoff, J.C. Caprais, C. Decker, J.L. Bruchec, P. Noel, and B. Husson, Respiration of Bivalves from Three Different Deep-Sea Areas: Cold Seeps, Hydrothermal Vents and Organic Carbon-Rich Sediments, Deep-Sea Res. Part II, 2017, 142(8), p 233–243CrossRefGoogle Scholar
  7. 7.
    Q. Lei, Z. Li, Z.Y. Pan, M.P. Wang, Z. Xiao, and C. Chen, Dynamics of Phase Transformation of Cu-Ni-Si Alloy with Super-High Strength and High Conductivity During Aging, Trans. Nonferr. Met. Soc., 2010, 20(6), p 1006–1011CrossRefGoogle Scholar
  8. 8.
    W.H. Sun, H.H. Xu, S.H. Liu, Y. Du, Z.H. Yuan, and B.Y. Huang, Phase Equilibria of the Cu-Ni-Si System at 700 °C, J. Alloys Compd., 2011, 509(41), p 9776–9781CrossRefGoogle Scholar
  9. 9.
    Q. Lei, Z. Li, T. Xiao, Y. Pang, Z.Q. Xiang, W.T. Qiu, and Z. Xiao, A New Ultrahigh Strength Cu-Ni-Si Alloy, Intermetallics, 2013, 42(12), p 77–84CrossRefGoogle Scholar
  10. 10.
    D. Božić, O. Dimčić, B. Dimčić, I. Cvijović, and V. Rajković, The Combination of Precipitation and Dispersion Hardening in Powder Metallurgy Produced Cu-Ti-Si Alloy, Mater. Charact., 2008, 59(8), p 1122–1126CrossRefGoogle Scholar
  11. 11.
    J.K. Lee, On the Effect of Substituting Copper Powder with Cupric Salt for the Sintering Process of W-Cu MIM Parts, Int. J. Refract. Met. Hard Mater., 2008, 26(4), p 290–294CrossRefGoogle Scholar
  12. 12.
    Y.K. Abdel, H.L. Faycal, A. Hiba, B. Thierry, B. Francois, A.L. Helbert, M.H. Mathon, K. Megumi, B. Djamel, and G. Terence, Microstructures and Textures of a Cu-Ni-Si Alloy Processed by High-Pressure Torsion, J. Alloys Compd., 2013, 574(10), p 361–367Google Scholar
  13. 13.
    X.H. Zhao, Y. Han, Z.Q. Bai, and B. Wei, The Experiment Research of Corrosion Behaviour About Ni-Based Alloys in Simulant Solution Containing H2S/CO2, Electrochim. Acta, 2011, 56(22), p 7725–7731CrossRefGoogle Scholar
  14. 14.
    H.W. Wang, P. Zhou, S.W. Huang, and C. Yu, Corrosion Mechanism of Low Alloy Steel in NaCl Solution with CO2 and H2S, Int. J. Electrochem. Sci., 2016, 11(2), p 1293–1309Google Scholar
  15. 15.
    Z.Y. Liu, X.Z. Wang, R.K. Liu, C.W. Du, and X.G. Li, Electrochemical and Sulfide Stress Corrosion Cracking Behaviors of Tubing Steels in a H2S/CO2 Annular Environment, J. Mater. Eng. Perform., 2014, 23(4), p 1279–1287CrossRefGoogle Scholar
  16. 16.
    X.Y. Tang, S.Z. Wang, L.L. Qian, Y.H. Li, Z.H. Lin, D.H. Xu, and Y.P. Zhang, Corrosion Behavior of Nickel Base Alloys, Stainless Steel and Titanium Alloy in Supercritical Water Containing Chloride, Phosphate and Oxygen, Chem. Eng. Res. Des., 2015, 100, p 530–541CrossRefGoogle Scholar
  17. 17.
    E.H. Han, J.Q. Wang, X.Q. Wu, and W. Ke, Corrosion Mechanism of Stainless Steel and Nickel Base Alloys in High Temperature High Pressure Water, Acta Metall. Sin., 2010, 46(11), p 1370–1390Google Scholar
  18. 18.
    P. Kritzer, Corrosion in High-Temperature and Supercritical Water and Aqueous Solutions: A Review, J. Supercrit. Fluid, 2004, 29(1-2), p 1–29CrossRefGoogle Scholar
  19. 19.
    X. Qi, H.H. Mao, and Y.T. Yang, Corrosion Behavior of Nitrogen Alloyed Martensitic Stainless Steel in Chloride Containing Solutions, Corros. Sci., 2017, 120, p 90–98CrossRefGoogle Scholar
  20. 20.
    H.P. Seifert and S. Ritter, The Influence of ppb Levels of Chloride Impurities on the Strain-Induced Corrosion Cracking and Corrosion Fatigue Crack Growth Behavior of Low-Alloy Steels Under Simulated Boiling Water Reactor Conditions, Corros. Sci., 2016, 108, p 148–159CrossRefGoogle Scholar
  21. 21.
    J. Wang, Z.Y. Wang, and W. Ke, A Study of the Evolution of Rust on Weathering Steel Submitted to the Qinghai Salt Lake Atmospheric Corrosion, Mater. Chem. Phys., 2013, 139(1), p 225–232CrossRefGoogle Scholar
  22. 22.
    H. Katayama and S. Kuroda, Long-Term Atmospheric Corrosion Properties of Thermally Sprayed Zn, Al and Zn-Al Coatings Exposed in a Coastal Area, Corros. Sci., 2013, 76(2), p 35–41CrossRefGoogle Scholar
  23. 23.
    J. Chen, Z. Qin, and D.W. Shoesmith, Kinetics of Corrosion Film Growth on Copper in Neutral Chloride Solutions Containing Small Concentrations of Sulfide, J. Electrochem. Soc., 2010, 157(10), p C338–C345CrossRefGoogle Scholar
  24. 24.
    T. Martino and R. Partovi, Mechanisms of Film Growth on Copper in Aqueous Solutions Containing Sulphide and Chloride Under Voltammetric Conditions, Electrochim. Acta, 2014, 127(5), p 439–447CrossRefGoogle Scholar
  25. 25.
    X.T. Chang, S.G. Chen, G.H. Gao, Y.S. Yin, S. Cheng, and T. Liu, Electrochemical Behavior of Microbiologically Influenced Corrosion on Fe3Al in Marine Environment, Acta Metall. Sin., 2009, 22(4), p 313–320CrossRefGoogle Scholar
  26. 26.
    I. Milošev and H.M. Metikoš, The Behaviour of Cu-xNi (x = 10 to 40 wt.%) Alloys in Alkaline Solutions Containing Chloride Ions, Electrochim. Acta, 1997, 42(10), p 1537–1548CrossRefGoogle Scholar

Copyright information

© ASM International 2019

Authors and Affiliations

  • Yuanyuan Shen
    • 1
  • Yaohua Dong
    • 1
    • 2
    Email author
  • Hengding Li
    • 1
  • Qinghong Li
    • 1
  • Li Zhang
    • 1
  • Lihua Dong
    • 1
  • Yansheng Yin
    • 1
  1. 1.Institute of Marine Materials Science and Engineering, College of Ocean Science and EngineeringShanghai Maritime UniversityShanghaiChina
  2. 2.School of Mechanical EngineeringShanghai Jiaotong UniversityShanghaiChina

Personalised recommendations