Journal of Materials Engineering and Performance

, Volume 27, Issue 11, pp 5769–5777 | Cite as

Achieving Excellent Strength–Ductility and Impact Toughness Combination by Cyclic Quenching in Medium Mn TRIP-Aided Steel

  • Lei Zhang
  • Xingmin HuangEmail author
  • Yanhua Wang
  • Yuanbo Guo
  • Guangze Dai
  • Dongsheng Li


A novel heat treatment process combined cyclic quenching (CQ) with austenite reversion treatment (ART) is proposed to obtain high strength–ductility and high-impact toughness combination in Fe-0.18C-8.92Mn-3.43Al (in mass%) steel. The process referred as CQ-ART was designed for accomplishing the following objectives: (i) refine the prior austenite grains during cyclic quenching process, (ii) further obtain the refined austenite–ferrite block and (iii) improve the stabilities of retained austenite with Mn/C enrichment during ART process. The outstanding product of tensile strength and total elongation of CQ-ART-treated steels was 41.53 and 37.39 GPa%, respectively, and higher than the ART steel of 27.45 GPa%. The highest Charpy impact toughness of CQ-ART steel can reach to 221 J, which is mainly attributed to the refined grains and discontinuous transformation-induced plasticity (TRIP) effect.


austenite reverted transformation cyclic quenching impact toughness retained austenite TRIP effect 



The authors would like to express their sincere thanks and gratitude to Science and Technology Support Plan in Sichuan Province of China for providing financial support for this work under project of Development and Application of Vanadium and Titanium Microalloyed New Products for High Performance Railway Track.


  1. 1.
    O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High Strength Fe-Mn-(Al, Si) TRIP-TWIP Steels Development-Properties-Application, Int. J. Plast., 2000, 16, p 1391–1409CrossRefGoogle Scholar
  2. 2.
    G. Frommeyer, U. Brüx, and P. Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ Int., 2003, 43, p 438–446CrossRefGoogle Scholar
  3. 3.
    E. Doege, S. Kulp, and C. Sunderkötter, Properties and Application of TRIP-Steel in Sheet Metal Forming, Steel Res. Int., 2002, 73, p 303–308CrossRefGoogle Scholar
  4. 4.
    H. Aydin, E. Essadiqi, I.H. Jung, and S. Yue, Development of 3rd Generation AHSS with Medium Mn Content Alloying Compositions, Mater. Sci. Eng., A, 2013, 564, p 501–508CrossRefGoogle Scholar
  5. 5.
    D.W. Suh and S.J. Kim, Medium Mn Transformation-Induced Plasticity Steels: Recent Progress and Challenges, Scripta Mater., 2017, 126, p 63–67CrossRefGoogle Scholar
  6. 6.
    Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Microstructure-Mechanical Property Relationship and Austenite Stability in Medium-Mn TRIP Steels: The Effect of Austenite-Reverted Transformation and Quenching-Tempering Treatments, Mater. Sci. Eng., A, 2017, 682, p 211–219CrossRefGoogle Scholar
  7. 7.
    H. Liu, L.X. Du, J. Hu, and H.Y. Wu, Interplay Between Reversed Austenite and Plastic Deformation in a Directly Quenched and Intercritically Annealed 0.04C-5Mn Low-Al Steel, J. Alloys Compd., 2017, 695, p 2072–2082CrossRefGoogle Scholar
  8. 8.
    Y. Ma, Medium-Manganese Steels Processed by Austenite-Reverted-Transformation Annealing for Automotive Applications, Mater. Sci. Technol., 2017, 33, p 1713–1727CrossRefGoogle Scholar
  9. 9.
    R.A. Grange, Strengthening Steel by Austenite Grain Refinement, ASM Trans. Quart., 1966, 59, p 26–48Google Scholar
  10. 10.
    T. Furuhara, K. Kikumoto, and H. Saito, Phase Transformation from Fine-Grained Austenite, ISIJ Int., 2008, 48, p 1038–1045CrossRefGoogle Scholar
  11. 11.
    H. Kim, D.W. Suh, and N.J. Kim, Fe-Al-Mn-C Lightweight Structural Alloys: A Review on the Microstructures and Mechanical Properties, Sci. Technol. Adv. Mater., 2013, 14, p 1–11CrossRefGoogle Scholar
  12. 12.
    Y.K. Lee and J. Han, Current Opinion in Medium Manganese Steel, Mater. Sci. Technol., 2015, 31, p 843–856CrossRefGoogle Scholar
  13. 13.
    H.F. Xu, J. Zhao, and W.Q. Cao, Tempering Effects on the Stability of Retained Austenite and Mechanical Properties in a Medium Manganese Steel, ISIJ Int., 2012, 52, p 868–873CrossRefGoogle Scholar
  14. 14.
    V. Colla, M. De Sanctis, A. Dimatteo, G. Lovicu, A. Solina, and R. Valentini, Strain Hardening Behavior of Dual-Phase Steels, Metall. Mater. Trans. A, 2009, 40, p 2557–2567CrossRefGoogle Scholar
  15. 15.
    D.W. Suh, S.J. Park, and T.H. Lee, Influence of Al on the Microstructural Evolution and Mechanical Behavior of Low-Carbon, Manganese Transformation-Induced-Plasticity Steel, Metall. Mater. Trans. A, 2010, 41, p 397–408CrossRefGoogle Scholar
  16. 16.
    A. Mishra and J. Maity, Structure-Property Correlation of AISI, 1080 Steel Subjected to Cyclic Quenching Treatment, Mater. Sci. Eng., A, 2015, 646, p 169–181CrossRefGoogle Scholar
  17. 17.
    S.J. Lee, Y.M. Park, and Y.K. Lee, Reverse Transformation Mechanism of Martensite to Austenite in a Metastable Austenitic Alloy, Mater. Sci. Eng., A, 2009, 515, p 32–37CrossRefGoogle Scholar
  18. 18.
    Y. Lü, B. Hutchinson, and D.A. Molodov, Effect of Deformation and Annealing on the Formation and Reversion of ε-Martensite in an Fe-Mn-C Alloy, Acta Mater., 2010, 58, p 3079–3090CrossRefGoogle Scholar
  19. 19.
    K.I. Sugimoto, M. Kobayashi, and S.I. Hashimoto, Ductility and Strain-Induced Transformation in a High-Strength Transformation-Induced Plasticity-Aided Dual-Phase Steel, Metall. Mater. Trans. A, 1992, 23, p 3085–3091CrossRefGoogle Scholar
  20. 20.
    Z.H. Cai, H. Ding, and H. Kamoutsi, Interplay Between Deformation Behavior and Mechanical Properties of Intercritically Annealed and Tempered Medium-Manganese Transformation-Induced Plasticity Steel, Mater. Sci. Eng., A, 2016, 654, p 359–367CrossRefGoogle Scholar
  21. 21.
    K. Sugimoto, H. Tanino, and J. Kobayashi, Warm Ductility of 0.2%C-1.5%Si-5%Mn TRIP-Aided Steel, Mater. Sci. Eng., A, 2017, 688, p 237–243CrossRefGoogle Scholar
  22. 22.
    J. Shi, X. Sun, M. Wang, and W. Hui, Enhanced Work-Hardening Behavior and Mechanical Properties in Ultrafine-Grained Steels with Large-Fractioned Metastable Austenite, Scripta Mater., 2010, 63, p 815–818CrossRefGoogle Scholar
  23. 23.
    Z.H. Cai, H. Ding, and R.D.K. Misra, Austenite Stability and Deformation Behavior in a Cold-Rolled Transformation-Induced Plasticity Steel with Medium Manganese Content, Acta Mater., 2015, 84, p 229–236CrossRefGoogle Scholar
  24. 24.
    P.J. Gibbs, B.C. De Cooman, D.W. Brown, and B. Clausen, Strain Partitioning in Ultra-Fine Grained Medium-Manganese Transformation Induced Plasticity Steel, Mater. Sci. Eng., A, 2014, 609, p 323–333CrossRefGoogle Scholar
  25. 25.
    Z.C. Li, H. Ding, and R.D.K. Misra, Microstructural Evolution and Deformation Behavior in the Fe-(6, 8.5)Mn-3Al-0.2C TRIP Steels, Mater. Sci. Eng., A, 2016, 672, p 161–169CrossRefGoogle Scholar
  26. 26.
    Z.H. Cai, H. Ding, and X. Xue, Significance of Control of Austenite Stability and Three-Stage Work-Hardening Behavior of an Ultrahigh Strength-High Ductility Combination Transformation-Induced Plasticity Steel, Scripta Mater., 2013, 68, p 865–868CrossRefGoogle Scholar
  27. 27.
    T. Hojo, J. Kobayashi, and K. Sugimoto, Impact Properties of Low-Alloy Transformation-Induced Plasticity-Steels with Different Matrix, Mater. Sci. Technol., 2016, 32, p 1035–1042CrossRefGoogle Scholar
  28. 28.
    H. Tanino, M. Horita, and K.I. Sugimoto, Impact Toughness of 0.2Pct C-1.5Pct Si-(1.5 to 5)Pct Mn Transformation-Induced Plasticity-Aided Steels with an Annealed Martensite Matrix, Metall. Mater. Trans. A, 2016, 47, p 2073–2080CrossRefGoogle Scholar
  29. 29.
    K. Sugimoto, H. Tanino, and J. Kobayashi, Impact Toughness of Medium-Mn Transformation-Induced Plasticity-Aided Steels, steel res, Int., 2015, 86, p 1151–1160Google Scholar
  30. 30.
    S.M. Sung, K.I. Sugimoto, and M. Kobayashi, Impact Properties of Low Alloy TRIP Steels, Tetsu-to-Hagane, 2000, 86, p 563–569CrossRefGoogle Scholar
  31. 31.
    M. Calcagnotto, D. Ponge, and D. Raabe, Effect of Grain Refinement to 1 μm on Strength and Toughness of Dual-Phase Steels, Mater. Sci. Eng. A, 2010, 527(29), p 7832–7840CrossRefGoogle Scholar
  32. 32.
    A. Ghaheri, A. Shafyei, and M. Honarmand, Effects of Inter-Critical Temperatures on Martensite Morphology, Volume Fraction and Mechanical Properties of Dual-Phase Steels Obtained from Direct and Continuous Annealing Cycles, Mater. Des., 2014, 62, p 305–319CrossRefGoogle Scholar
  33. 33.
    J. Sun, T. Jiang, and H. Liu, Enhancement of Impact Toughness by Delamination Fracture in a Low-Alloy High-Strength Steel with Al Alloying, Metall. Mater. Trans. A, 2016, 47, p 5985–5993CrossRefGoogle Scholar
  34. 34.
    J. Chen, M. Lv, Z. Liu, and G. Wang, Combination of Ductility and Toughness by the Design of Fine Ferrite/Tempered Martensite-Austenite Microstructure in a Low Carbon Medium Manganese Alloyed Steel Plate, Mater. Sci. Eng., A, 2015, 648, p 51–56CrossRefGoogle Scholar
  35. 35.
    H.F. Lan, L.X. Du, and Q. Li, Improvement of Strength-Toughness Combination in Austempered Low Carbon Bainitic Steel: The Key Role of Refining Prior Austenite Grain Size, J. Alloys Compd, 2017, 710, p 702–710CrossRefGoogle Scholar
  36. 36.
    G. Gao, H. Zhang, and X. Gui, Enhanced Ductility and Toughness in an Ultrahigh-Strength Mn-Si-Cr-C Steel: The Great Potential of Ultrafine Filmy Retained Austenite, Acta Mater., 2014, 76, p 425–433CrossRefGoogle Scholar
  37. 37.
    W.T. Zhao, X.F. Huang, and W.G. Huang, Comparative Study on a 0.2C Steel Treated by Q&P and A&T Treatments, Mater. Sci. Technol., 2016, 32, p 1374–1381CrossRefGoogle Scholar
  38. 38.
    J. Hu, L.X. Du, G.S. Sun, and H. Xie, The Determining Role of Reversed Austenite in Enhancing Toughness of a Novel Ultra-Low Carbon Medium Manganese High Strength Steel, Scripta Mater., 2015, 104, p 87–90CrossRefGoogle Scholar
  39. 39.
    Y. Zou, Y.B. Xu, Z.P. Hu, and X.L. Gu, Austenite Stability and its Effect on the Toughness of a High Strength Ultra-Low Carbon Medium Manganese Steel Plate, Mater. Sci. Eng., A, 2016, 675, p 153–163CrossRefGoogle Scholar
  40. 40.
    J. Chen, M. Lv, S. Tang, Z. Liu, and G. Wang, Correlation Between Mechanical Properties and Retained Austenite Characteristics in a Low-Carbon Medium Manganese Alloyed Steel Plate, Mater. Charact., 2015, 106, p 108–111CrossRefGoogle Scholar
  41. 41.
    W. Cao, M. Zhang, C. Huang, S. Xiao, H. Dong, and Y. Weng, Ultrahigh Charpy Impact Toughness (~450 J) Achieved in High Strength Ferrite/Martensite Laminated Steels, Sci. Rep., 2017, 7, p 41459CrossRefGoogle Scholar
  42. 42.
    I.C. Yi, Y. Ha, and H. Lee, Improvement of Impact Toughness of 5Mn-1Al-0.5Ti steel by Intercritical Annealing, Metals. Mater. Int., 2017, 23, p 283–289CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Lei Zhang
    • 1
    • 2
  • Xingmin Huang
    • 1
    Email author
  • Yanhua Wang
    • 1
  • Yuanbo Guo
    • 1
  • Guangze Dai
    • 1
  • Dongsheng Li
    • 3
  1. 1.School of Materials Science and Engineering, and Key, Lab of Advanced Technologies of Materials (Ministry of Education)Southwest Jiaotong UniversityChengduPR China
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anPR China
  3. 3.School of Materials Science and EngineeringJiangsu UniversityZhenjiangPR China

Personalised recommendations