Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 9, pp 4714–4721 | Cite as

Nano-Deformation Behavior of a Thermally Aged Duplex Stainless Steel Investigated by Nanoindentation, FIB and TEM

  • Gang Liu
  • Yanli Wang
  • Shilei Li
  • Xitao Wang
Article
  • 49 Downloads

Abstract

Nanoindentation and electron backscattering diffraction were conducted on a thermally aged duplex stainless steel to investigate the effect of crystal orientation on the plastic deformation behavior during indentation testing. Both nanohardness H and indentation modulus E are correlated with the orientation factor averaged over three normal directions of the contact surface. After thermal aging, the orientation dependence of the hardness and indentation modulus in ferrite significantly changed. For both the ferrite and austenite phases, the maximum and minimum values of the hardness and indentation modulus are given by the near-\(\left\langle {111} \right\rangle\)  and near-\(\left\langle {001} \right\rangle\)-oriented grains, respectively. The TEM analysis results indicate that the area of plastic deformation in the ferrite grain decreases after thermal aging. The interactions between precipitates and dislocations are considered to be responsible for the degradation of plastic deformation ability in ferrite. The anisotropy of hardness is related to the crystallographic nature and shearing mechanisms.

Keywords

crystallographic structure duplex stainless steel nanoindentation thermal aging 

Notes

Acknowledgments

This work was financially supported by the Beijing Natural Science Foundation (2174080) and the National Natural Science Foundation of China (51601013).

References

  1. 1.
    P. McConnell, W. Sheckherd, and D. Norris, Properties of Thermally Embrittled Cast Duplex Stainless Steel, J. Mater. Eng., 1989, 11(3), p 227–236CrossRefGoogle Scholar
  2. 2.
    H.-M. Chung, Aging and Life Prediction of Cast Duplex Stainless Steel Components, Int. J. Pres. Ves. Pip., 1992, 50(1–3), p 179–213CrossRefGoogle Scholar
  3. 3.
    J.B. Vogt, K. Massol, and J. Foct, Role of the Microstructure on Fatigue Properties of 475 °C Aged Duplex Stainless Steels, Int. J. Fatigue, 2002, 24(6), p 627–633CrossRefGoogle Scholar
  4. 4.
    S. Lee, P.-T. Kuo, and K. Wichman, Flaw Evaluation of Thermally Aged Cast Stainless Steel in Light-Water Reactor Applications, Int. J. Pres. Ves. Pip., 1997, 72(1), p 37–44CrossRefGoogle Scholar
  5. 5.
    K. Chandra, R. Singhal, V. Kain, and V.-S. Raja, Low Temperature Embrittlement of Duplex Stainless Steel Correlation Between Mechanical and Electrochemical Behavior, Mater. Sci. Eng. A., 2010, 527(16), p 3904–3912CrossRefGoogle Scholar
  6. 6.
    N. Jia, R.-L. Peng, G.-C. Chai, S. Johansson, and Y.-D. Wang, Direct Experimental Mapping of Microscale Deformation Heterogeneity in Duplex Stainless Steel, Mater. Sci. Eng. A., 2008, 491(1–2), p 425–433CrossRefGoogle Scholar
  7. 7.
    I. Alvarez-Armas, U. Krupp, M. Balbi, S. Hereñú, M.-C. Marinelli, and H. Knobbe, Growth of Short Cracks During Low and High Cycle Fatigue in a Duplex Stainless Steel, Int. J. Fatigue, 2012, 41(8), p 95–100CrossRefGoogle Scholar
  8. 8.
    K. Chandra, V. Kain, V. Bhutani, V.-S. Raja, R. Tewari, G.-K. Dey, and J.-K. Chakravartty, Low Temperature Thermal Aging of Austenitic Stainless Steel Welds: Kinetics and Effects on Mechanical Properties, Mater. Sci. Eng. A., 2012, 534(1), p 163–175CrossRefGoogle Scholar
  9. 9.
    S. Li, Y.-L. Wang, H.-L. Zhang, S.-X. Li, G. Wang, and X.-T. Wang, Effects of Prior Solution Treatment on Thermal Aging Behavior of Duplex Stainless Steels, J. Nucl. Mater., 2013, 441(1–3), p 337–342Google Scholar
  10. 10.
    J.-J. Shiao, C.-H. Tsai, J.-J. Kai, and J.-H. Huang, Aging Embrittlement and Lattice Image Analysis in a Fe-Cr-Ni Duplex Stainless Steel Aged at 400 °C, J. Nucl. Mater., 1994, 217(3), p 269–278CrossRefGoogle Scholar
  11. 11.
    J.-K. Sahu, U. Krupp, R.-N. Ghosh, and H.-J. Christ, Effect of 475 °C Embrittlement on the Mechanical Properties of Duplex Stainless Steel, Mater. Sci. Eng. A., 2009, 508(1), p 1–14CrossRefGoogle Scholar
  12. 12.
    K. Chandra, V. Kain, V.-S. Raja, R. Tewari, and G.-K. Dey, Low Temperature Thermal Ageing Embrittlement of Austenitic Stainless Steel Welds and Its Electrochemical Assessment, Corros. Sci., 2012, 54(1), p 278–290CrossRefGoogle Scholar
  13. 13.
    B.-B. He, M.-X. Huang, Z.-Y. Liang, A.-H. Ngan, H.-W. Luo, J. Shi, W.-Q. Cao, and H. Dong, Nanoindentation Investigation on the Mechanical Stability of Individual Austenite Grains in a Medium-Mn Transformation-Induced Plasticity Steel, Scr. Mater., 2013, 69(3), p 215–218CrossRefGoogle Scholar
  14. 14.
    C.-D. Hardie and S.-G. Roberts, Nanoindentation of Model Fe-Cr Alloys with Self-Ion Irradiation, J. Nucl. Mater., 2013, 433(1–3), p 174–179CrossRefGoogle Scholar
  15. 15.
    J.-C. Stinville, C. Tromas, P. Villechaise, and C. Templier, Anisotropy Changes in Hardness and Indentation Modulus Induced by Plasma Nitriding of 316L Polycrystalline Stainless Steel, Scr. Mater., 2011, 64(1), p 37–40CrossRefGoogle Scholar
  16. 16.
    S. Pathak, J. Michler, K. Wasmer, and S.-R. Kalidindi, Studying Grain Boundary Regions in Polycrystalline Materials Using Spherical Nano-indentation and Orientation Imaging Microscopy, J. Mater. Sci., 2012, 47(2), p 815–823CrossRefGoogle Scholar
  17. 17.
    C. Tromas, J.-C. Stinville, C. Templier, and P. Villechaise, Hardness and Elastic Modulus Gradients in Plasma-Nitrided 316L Polycrystalline Stainless Steel Investigated by Nanoindentation Tomography, Acta Mater., 2012, 60(5), p 1965–1973CrossRefGoogle Scholar
  18. 18.
    T. Takeuchi, J. Kameda, Y. Nagai, T. Toyama, Y. Nishiyama, and K. Onizawa, Study on Microstructural Changes in Thermally-Aged Stainless Steel Weld-Overlay Cladding of Nuclear Reactor Pressure Vessels by Atom Probe Tomography, J. Nucl. Mater., 2011, 415(2), p 198–204CrossRefGoogle Scholar
  19. 19.
    S.-L. Li, Y.-L. Wang, S.-X. Li, H.-L. Zhang, F. Xue, and X.-T. Wang, Microstructures and Mechanical Properties of Cast Austenite Stainless Steels After Long-term Thermal Aging at Low Temperature, Mater. Des., 2013, 50(17), p 886–892CrossRefGoogle Scholar
  20. 20.
    S.-C. Schwarm, S. Mburu, R.-P. Kolli, D.-E. Perea, and S. Ankem, Effects of Long-term Thermal Aging on Bulk and Local Mechanical Behavior of Ferritic–Austenitic Duplex Stainless Steels, Mater. Sci. Eng. A., 2018, 720(3), p 130–139CrossRefGoogle Scholar
  21. 21.
    T. Liu, W. Wang, W. Qiang, and G. Shu, Mechanical Properties and Eddy Current Testing of Thermally Aged Z3CN20.09M Cast Duplex Stainless Steel, J. Mater. Res., 2018, 501, p 1–7Google Scholar
  22. 22.
    W.-C. Oliver and G.-M. Pharr, An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments, J. Mater. Res., 1992, 7(6), p 1564–1583CrossRefGoogle Scholar
  23. 23.
    J.-J. Vlassak and W.-D. Nix, Indentation Modulus of Elastically Anisotropic Half Spaces, Philos. Mag. A., 1993, 67(67), p 1045–1056CrossRefGoogle Scholar
  24. 24.
    J.-J. Vlassak and W.-D. Nix, Measuring the Elastic Properties of Anisotropic Materials by Means of Indentation Experiments, J. Mech. Phys. Solids, 1994, 42(8), p 1223–1245CrossRefGoogle Scholar
  25. 25.
    T. Czerwiec, H. He, G. Marcos, T. Thiriet, S. Weber, and H. Michel, Fundamental and Innovations in Plasma Assisted Diffusion of Nitrogen and Carbon in Austenitic Stainless Steels and Related Alloys, Plasma Process. Polym., 2009, 6(6–7), p 401–409CrossRefGoogle Scholar
  26. 26.
    K. Salmutter and F. Stangler, Elasticity or Plasticity of an Austenitic Chromium-Nickel Steel, Metallk., 1960, 51, p 544Google Scholar
  27. 27.
    R.-M. Cotterill and M. Doyama, Energy and Atomic Configuration of Complete and Dissociated Dislocations. I. Edge Dislocation in an fcc Metal, Phys. Rev., 1966, 145(2), p 465CrossRefGoogle Scholar
  28. 28.
    S.-G. Roberts, P.-D. Warren, and P.-B. Hirsch, Hardness Anisotropies: A New Approach, Mater. Sci. Eng. A., 1988, s105–106(11), p 19–28CrossRefGoogle Scholar
  29. 29.
    N. Jahanzeb, J.-H. Shin, J. Singh, Y.-U. Heo, and S.-H. Choi, Effect of Microstructure on the Hardness Heterogeneity of Dissimilar Metal Joints Between 316L Stainless Steel and SS400 Steel, Mater. Sci. Eng. A., 2017, 700(7), p 338–350CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina
  2. 2.Collaborative Innovation Center of Steel TechnologyUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations