Advertisement

Journal of Materials Engineering and Performance

, Volume 27, Issue 8, pp 4129–4139 | Cite as

Effect of Deformation Temperature on the Microstructure and Mechanical Properties of High-Strength Low-Alloy Steel During Hot Compression

  • Chengzhi Zhao
  • Wilasinee Kingkam
  • Li Ning
  • Hexin Zhang
  • Li Zhiming
Article
  • 86 Downloads

Abstract

The microstructure and mechanical properties of high-strength low-alloy steel were investigated at deformation temperatures of 800-1100 °C and strain rates of 0.1-10 s−1 using an MMS-200 thermal mechanical simulator. The results indicated that the increased deformation processes observed between the starting and finishing temperatures during hot compression testing caused a polygonal ferrite transformation in the material. The polygonal ferrite grain sizes increased with increasing transformation temperatures and gradually grew larger at higher deformation temperatures. Widmanstätten ferrite and acicular ferrite were also formed at high temperatures from 1000-1100 °C, which accordingly led to an increase in Vickers microhardness. In addition, the flow stress in the material increased with an increase in the strain and a decrease in the deformation temperature.

Keywords

flow stress high-strength low-alloy steel polygonal ferrite microstructure 

Notes

Acknowledgments

This project was supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant Nos. GK2100260214 and GK2030260169) and the Department of Physics and Materials Sciences, Chiang Mai University.

References

  1. 1.
    J.R. Paules, Practical Considerations in Microalloying with Vanadium, Niobium, or Titanium, in Proceedings of the International Symposium on Micro-alloyed Vanadium Steels, Cracow, p. 19–32 (1990)Google Scholar
  2. 2.
    B. Beidokhti, A. Koukabi, and A. Dolati, Effect of Titanium Addition on the Microstructure and Inclusion Formation in Submerged Arc Welded HSLA Pipeline Steel, J. Mater. Proc. Technol., 2009, 209, p 4027–4035CrossRefGoogle Scholar
  3. 3.
    B.K. Show, R. Veerababu, R. Balamuralikrishnan, and G. Malakondaiah, Effect of Vanadium and Titanium Modification on the Microstructure and Mechanical Properties of a Microalloyed HSLA Steel, Mater. Sci. Eng. A, 2010, 527, p 1595–1604CrossRefGoogle Scholar
  4. 4.
    G.Y. Qiao, F.R. Xiao, X.B. Zhang, Y.B. Cao, and L. Bo, Effects of Contents of Nb and C on Hot Deformation Behaviors of High Nb X80 Pipeline Steels, Nonferrous Met. Soc. China, 2009, 19, p 1395–1399CrossRefGoogle Scholar
  5. 5.
    B. Tanguy, T.T. Luu, G. Perrin, A. Pineau, and J. Besson, Plastic and Damage Behaviour of a High Strength X100 Pipeline Steel: Experiments and Modelling, Int. J. Press. Vessel. Pip., 2008, 85, p 322–335CrossRefGoogle Scholar
  6. 6.
    W. Wang, Y. Shan, and K. Yang, Study of High Strength Pipeline Steels with Different Microstructures, Mater. Sci. Eng. A, 2009, 502, p 38–44CrossRefGoogle Scholar
  7. 7.
    F. Xiao, B. Liao, D. Ren, Y. Shan, and K. Yang, Acicular Ferritic Microstructure of a Low-Carbon Mn-Mo-Nb Microalloyed Pipeline Steel, Mater. Charact., 2005, 54, p 305–314CrossRefGoogle Scholar
  8. 8.
    C. Ouchi, Development of Steel Plates by Intensive Use of TMCP and Direct Quenching Processes, ISIJ Int., 2001, 41, p 542–553CrossRefGoogle Scholar
  9. 9.
    H. Jun, X.D. Lin, X. Hui, H.G. Xiu, and R.D.K. Misra, Microstructure and Mechanical Properties of TMCP Heavy Plate Microalloyed Steel, Mater. Sci. Eng. A, 2014, 607, p 122–131CrossRefGoogle Scholar
  10. 10.
    Y. Chen, D. Zhang, Y. Liu, H. Li, and D. Xu, Effect of Dissolution and Precipitation of Nb on the Formation of Acicular Ferrite/Bainite Ferrite in Low-Carbon HSLA Steels, Mater. Charact., 2013, 84, p 232–239CrossRefGoogle Scholar
  11. 11.
    Y.H. Bae, J.S. Lee, J.K. Choi, W.Y. Choo, and S.H. Hong, Effects of Austenite Conditioning on Austenite/Ferrite Phase Transformation of HSLA Steel, Mater. Trans., 2004, 45, p 137–142CrossRefGoogle Scholar
  12. 12.
    Y.C. Liu, Y. Shao, C.X. Liu, C. Yan, and D.T. Zhang, Microstructure Evolution of HSLA Pipeline Steels after Hot Uniaxial Compression, Metals, 2016, 9, p 721Google Scholar
  13. 13.
    G. Krauss, Steels: Processing, Structure, and Performance, in ASM International, p. 118–120 (2005)Google Scholar
  14. 14.
    Y.C. Lin, M.S. Chen, and J. Zhong, Microstructural Evolution in 42CrMo Steel During Compression at Elevated Temperatures, Comput. Mater. Sci., 2008, 62, p 2132–2135Google Scholar
  15. 15.
    S. Mandal, A.K. Bhaduri, and V.S. Sarma, Role of Twinning on Dynamic Recrystallization and Microstructure During Moderate to High Strain Rate Hot Deformation of a Ti-Modified Austenitic Stainless Steel, Metall. Mater. Trans. A, 2012, 43, p 2056–2068CrossRefGoogle Scholar
  16. 16.
    G.Z. Quan, Y. Wang, Y.Y. Liu, and J. Zhou, Effect of Temperatures and Strain Rates on the Average Size of Grains Refined by Dynamic Recrystallization for as-Extruded 42CrMo Steel, Mater. Res., 2013, 16, p 1092–1105CrossRefGoogle Scholar
  17. 17.
    S.C. Hong, S.H. Lim, H.S. Hong, K.J. Lee, D.H. Shin, and K.S. Lee, Effects of Nb on Strain Induced Ferrite Transformation in C-Mn Steel, Mater. Sci. Eng. A, 2003, 355, p 241–248CrossRefGoogle Scholar
  18. 18.
    R.L. Bodnar and S.S. Hansen, Effects of Widmanstätten Ferrite on the Mechanical Properties of a 0.2 pct C-0.7 pct Mn Steel, Metall. Mater. Trans. A, 1994, 25, p 763–773CrossRefGoogle Scholar
  19. 19.
    S. Abbasi and A. Shokuhfar, Prediction of Hot Deformation Behaviour of 10Cr-10Ni-5Mo-2Cu Steel, Mater. Lett., 2007, 61, p 2523–2526CrossRefGoogle Scholar
  20. 20.
    L.Q. Cheng, Y. Zhao, X.Q. Xu, and X.H. Liu, Dynamic Recrystallization and Precipitation Behaviors of a Kind of Low Carbon V-Microalloyed Steel, Acta. Mater. Sin., 2010, 46, p 1215–1222Google Scholar
  21. 21.
    X.Q. Xu, D.F. Li, S.L. Guo, and X.P. Wu, Microstructure Evolution of Zn-8Cu-0.3Ti Alloy During Hot Deformation, Trans. Nonferrous Met. Soc. China, 2012, 22, p 1606–1612CrossRefGoogle Scholar
  22. 22.
    P.L. Mao, G.Y. Su, and K. Yang, Dynamic Recrystallisation of as Cast Austenite in 18-8 Stainless Steel, Mater. Sci. Technol., 2002, 18, p 892–896CrossRefGoogle Scholar
  23. 23.
    J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, and R.R. Adharapurapu, Influence of Temperature and Strain Rate on the Mechanical Behavior of Three Amorphous Polymers: Characterization and Modeling of the Compressive Yield Stress, Int. J. Solids. Struct., 2006, 43, p 2318–2335CrossRefGoogle Scholar
  24. 24.
    S.C. Li, Y.L. Kang, G.M. Zhu, and S. Kuang, Effects of Strain Rates on Mechanical Properties and Fracture Mechanism of DP780 Dual Phase Steel, J. Mater. Eng. Perform., 2015, 24, p 2426–2434CrossRefGoogle Scholar
  25. 25.
    E.O. Hall, The Deformation and Ageing of Mild Steel: III, Discussion of Results, Phys. Soc. Lond., 1951, 64B, p 747–753CrossRefGoogle Scholar
  26. 26.
    Y. Prawoto, N. Jasmawati, and K. Sumeru, Effect of Prior Austenite Grain Size on the Morphology and Mechanical Properties of Martensite in Medium Carbon Steel, J. Mater. Sci. Technol., 2012, 28, p 461–466CrossRefGoogle Scholar
  27. 27.
    S. Takaki, Review on the Hall–Petch Relation in Ferritic Steel, Mater. Sci. Forum., 2010, 654, p 11–16CrossRefGoogle Scholar
  28. 28.
    N. Nakada, M. Fujihara, T. Tsuchiyama, and S. Takaki, Effect of Phosphorus on Hall–Petch Coefficient in Ferritic Steel, ISIJ Int., 2011, 51, p 1169–1173CrossRefGoogle Scholar
  29. 29.
    P.L. Sun, E.K. Cerreta, G.T. Gray, and J.F. Bingert, The Effect of Grain Size, Strain Rate, and Temperature on the Mechanical Behavior of Commercial Purity Aluminum, Metall. Mater. Trans. A, 2006, 37A, p 2983–2994CrossRefGoogle Scholar
  30. 30.
    Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma, Effect of Nanocrystalline and Ultrafine Grain Sizes on the Strain Rate Sensitivity and Activation Volume: Fcc Versus bcc Metals, Mater. Mater. Sci. Eng. A, 2004, 381, p 71–79CrossRefGoogle Scholar
  31. 31.
    F. Wang, B. Li, T.T. Gao, P. Huang, K.W. Xu, and T.J. Lu, Activation Volume and Strain Rate Sensitivity in Plastic Deformation of Nanocrystalline Ti, Surf. Coat. Technol., 2013, 228, p S254–S256CrossRefGoogle Scholar
  32. 32.
    D.T. Zhang, Z.X. Qiao, Y.C. Liu, J. Huo, Y. Chen, and Z.S. Yan, Effect of Austenisation Temperature on Phase Transformation in Low Carbon Microalloyed Pipeline Steel, Mater Res Innov., 2013, 17, p 200–204CrossRefGoogle Scholar
  33. 33.
    Y. Chen, D. Zhang, Y. Liu, H. Li, and D. Xu, Effect of Dissolution and Precipitation of Nb on the Formation of Acicular Ferrite/Bainite Ferrite in Low-Carbon HSLA Steels, Mater. Charact., 2013, 84, p 232–239CrossRefGoogle Scholar
  34. 34.
    M. Maalekian, R. Radis, M. Militzer, A. Moreau, and W.J. Poole, In Situ Measurement and Modelling of Austenite Grain Growth in a Ti/Nb Microalloyed Steel, Acta Mater., 2012, 60, p 1015–1026CrossRefGoogle Scholar
  35. 35.
    U. Trdan, M. Skarba, and J. Grum, Laser Shock Peening Effect on the Dislocation Transitions and Grain Refinement of Al-Mg-Si Alloy, Mater. Charact., 2014, 97, p 57–68CrossRefGoogle Scholar
  36. 36.
    C. Jang, H. Jang, J.D. Hong, H. Cho, T.S. Kim, and J.G. Lee, Environmental Fatigue of Metallic Materials in Nuclear Power Plants–A Review of KOREAN TEST PROGRAMS, Nucl. Eng Technol., 2013, 45, p 929–940CrossRefGoogle Scholar
  37. 37.
    A.G. Kostryzhev, O.O. Marenych, C.R. Killmore, and E.V. Pereloma, Strengthening Mechanisms in Thermomechanically Processed NbTi-Microalloyed Steel, Metall. Mater. Tran. A., 2015, 46, p 3470–3480CrossRefGoogle Scholar
  38. 38.
    G. Ge, L. Zhang, J. Xin, J. Lin, M. Aindow, and L. Zhang, Constitutive Modeling of High Temperature Flow Behavior in a Ti-45Al-8Nb-2Cr-2Mn-0.2 Y Alloy, Sci. Rep., 2018, 8, p 5453CrossRefGoogle Scholar
  39. 39.
    M. Belbasi, M.T. Salehi, and S.A.A.A.J. Mousavi, Hot Deformation Behavior of NiTiHf Shape Memory Alloy Under Hot Compression Test, J. Mater. Eng. Perform., 2012, 21, p 2594–2599CrossRefGoogle Scholar
  40. 40.
    E. Zhang, Y. Ge, and G. Qin, Hot Deformation Behavior of an Antibacterial Co-29Cr-6Mo-1.8 Cu Alloy and Its Effect on Mechanical Property and Corrosion Resistance, J. Mater. Sci. Technol., 2018, 34, p 523–533CrossRefGoogle Scholar
  41. 41.
    W.Y. Liu, H. Zhao, D. Li, Z.Q. Zhang, G.J. Huang, and Q. Liu, Hot Deformation Behavior of AA7085 Aluminum Alloy During Isothermal Compression at Elevated Temperature, Mater. Sci. Eng. A., 2014, 596, p 176–182CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Chengzhi Zhao
    • 1
    • 2
  • Wilasinee Kingkam
    • 1
  • Li Ning
    • 1
  • Hexin Zhang
    • 1
    • 2
  • Li Zhiming
    • 3
  1. 1.College of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Key Laboratory of Superlight Materials and Surface Technology, Ministry of EducationHarbin Engineering UniversityHarbinChina
  3. 3.College of Power and Energy EngineeringHarbin Engineering UniversityHarbinChina

Personalised recommendations