Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy

Article
  • 36 Downloads

Abstract

The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.

Keywords

electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) strengthened layer surface mechanical properties Ti-6Al-4V alloy ultra-refined grain 

Notes

Acknowledgments

The authors wish to acknowledge the financial support from the Guangdong Science and Technology Plan Project (2014B090901029), the Shenzhen Development and Reform Commission Engineering Laboratory Project (Shenzhen development and Reform 2015-1033), the Shenzhen Science and Technology supporting Plan Project (GJHS20160331183313435) and the project funded by China Postdoctoral Science Foundation (No. 2017M620770).

References

  1. 1.
    D.S. Milovanović, B.B. Radak, B.M. Gaković, D. Batani, M.D. Momčilović, and M.S. Trtica, Surface Morphology Modifications of Titanium Based Implant Induced by 40 picosecond laser Pulses at 266 nm, J. Alloys Compd., 2010, 501(1), p 89–92CrossRefGoogle Scholar
  2. 2.
    M. Masmoudi, M. Assoul, M. Wery, R. Abdelhedi, F.E. Halouani, and G. Monteil, Wear Behaviour of Nitric Acid Passivated cp Ti and Ti6Al4V, J. Alloys Compd., 2009, 478(1–2), p 726–730CrossRefGoogle Scholar
  3. 3.
    C. Ye, A. Telang, A.S. Gill, S. Suslov, Y. Idell, Z. Kai, J.M.K. Wiezorek, Z. Zhou, D. Qian, and S.R. Mannava, Gradient Nanostructure and Residual Stresses Induced by Ultrasonic Nano-crystal SURFACE Modification in 304 Austenitic Stainless Steel for High Strength and High Ductility, Mater. Sci. Eng. A, 2014, 613(11–12), p 274–288CrossRefGoogle Scholar
  4. 4.
    A.V. Panin, M.S. Kazachenok, A.I. Kozelskaya, R.R. Hairullin, and E.A. Sinyakova, Mechanisms of Surface Roughening of Commercial Purity Titanium During Ultrasonic Impact Treatment, Mater. Sci. Eng. A, 2015, 647, p 43–50CrossRefGoogle Scholar
  5. 5.
    A. Amanov, Y.S. Pyun, and S. Sasaki, Effects of Ultrasonic Nanocrystalline Surface Modification (UNSM) Technique on the Tribological Behavior of Sintered Cu-Based Alloy, Tribol. Int., 2014, 72(4), p 187–197CrossRefGoogle Scholar
  6. 6.
    V. Singh and M. Marya, Surface Modification of Oilfield Alloys by Ultrasonic Impact Peening: UNS N07718, N07716, G41400, and S17400, J. Mater. Eng. Perform., 2016, 25(1), p 338–347CrossRefGoogle Scholar
  7. 7.
    X.J. Cao, Y.S. Pyoun, and R. Murakami, Fatigue Properties of a S45C Steel Subjected to Ultrasonic Nanocrystal Surface Modification, Appl. Surf. Sci., 2010, 256(21), p 6297–6303CrossRefGoogle Scholar
  8. 8.
    A. Amanov, I.S. Cho, and Y.S. Pyun, Microstructural Evolution and Surface Properties of Nanostructured Cu-Based Alloy by Ultrasonic Nanocrystalline Surface Modification Technique, Appl. Surf. Sci., 2016, 388, p 185–195CrossRefGoogle Scholar
  9. 9.
    J. Yu, G. Gou, L. Zhang, W. Zhang, H. Chen, and Y.P. Yang, Ultrasonic Impact Treatment to Improve Stress Corrosion Cracking Resistance of Welded Joints of Aluminum Alloy, J. Mater. Eng. Perform., 2016, 25(7), p 3046–3056CrossRefGoogle Scholar
  10. 10.
    B. Wu, P. Wang, Y.S. Pyoun, J. Zhang, and R.I. Murakami, Effect of Ultrasonic Nanocrystal Surface Modification on the Fatigue Behaviors of Plasma-Nitrided S45C Steel, Surf. Coat. Technol., 2012, 213(12), p 271–277CrossRefGoogle Scholar
  11. 11.
    A. Cherif, Y. Pyoun, and B. Scholtes, Effects of Ultrasonic Nanocrystal Surface Modification (UNSM) on Residual Stress State and Fatigue Strength of AISI, 304, J. Mater. Eng. Perform., 2010, 19(2), p 282–286CrossRefGoogle Scholar
  12. 12.
    A. Amanov, B. Urmanov, T. Amanov, and Y.S. Pyun, Strengthening of Ti-6Al-4V Alloy by High Temperature Ultrasonic Nanocrystal Surface Modification Technique, Mater. Lett., 2017, 196, p 198–201CrossRefGoogle Scholar
  13. 13.
    I.S. Cho, A. Amanov, D.H. Kwak, B.J. Jeong, and I.G. Park, The Influence of Surface Modification Techniques on Fretting Wear of Al-Si Alloy Prepared by Gravity Die Casting, Mater. Design, 2015, 65(65), p 401–409CrossRefGoogle Scholar
  14. 14.
    A. Karimi and S. Amini, Steel 7225 Surface Ultrafine Structure and Improvement of Its Mechanical Properties Using Surface Nanocrystallization Technology by Ultrasonic Impact, Int. J. Adv. Manuf. Technol., 2016, 83(5–8), p 1127–1134CrossRefGoogle Scholar
  15. 15.
    H. Wang, G. Song, and G. Tang, Enhanced Surface Properties of Austenitic Stainless Steel by Electropulsing-Assisted Ultrasonic Surface Rolling Process, Surf. Coat. Technol., 2015, 282, p 149–154CrossRefGoogle Scholar
  16. 16.
    X. Yang, J. Zhou, and X. Ling, Study on Plastic Damage of AISI, 304 Stainless Steel Induced by Ultrasonic Impact Treatment, Mater. Design, 2012, 36, p 477–481CrossRefGoogle Scholar
  17. 17.
    R. Zhu, G. Tang, S. Shi, and M. Fu, Effect of Electroplastic Rolling on Deformability and Oxidation of NiTiNb Shape Memory Alloy, J. Mater. Process. Technol., 2013, 213(1), p 30–35CrossRefGoogle Scholar
  18. 18.
    Y. Jiang, L. Guan, G. Tang, C. Shek, and Z. Zhang, Influence of Electropulsing Treatment on Microstructure and Mechanical Properties of Cold-Rolled Mg-9Al-1Zn Alloy Strip, Mater. Sci. Eng. A, 2011, 528(16), p 5627–5635CrossRefGoogle Scholar
  19. 19.
    X. Li, F. Wang, X. Li, G. Tang, and J. Zhu, Improvement of Formability of Mg-3Al-1Zn Alloy Strip by Electroplastic-Differential Speed Rolling, Mater. Sci. Eng. A, 2014, 618, p 500–504CrossRefGoogle Scholar
  20. 20.
    J. Kuang, X. Li, R. Zhang, Y. Ye, A.A. Luo, and G. Tang, Enhanced rollability of Mg 3Al 1Zn Alloy by Pulsed Electric Current: A Comparative Study, Mater. Design, 2016, 100, p 204–216CrossRefGoogle Scholar
  21. 21.
    Y. Jiang, G. Tang, C. Shek, and Y. Zhu, Effect of Electropulsing Treatment on Microstructure and Tensile Fracture Behavior of Aged Mg-9Al-1Zn Alloy Strip, Appl. Phys. A, 2009, 97(3), p 607–615CrossRefGoogle Scholar
  22. 22.
    Y. Jiang, G. Tang, C. Shek, Y. Zhu, L. Guan, S. Wang, and Z. Xu, Improved Ductility of Aged Mg-9Al-1Zn Alloy Strip by Electropulsing Treatment, J. Mater. Res., 2009, 24(5), p 1810–1814CrossRefGoogle Scholar
  23. 23.
    R. Qin and S. Su, Thermodynamics of Crack Healing Under Electropulsing, J. Mater. Res., 2002, 17(8), p 2048–2052CrossRefGoogle Scholar
  24. 24.
    A. Hosoi, T. Nagahama, and Y. Ju, Fatigue Crack Healing by a Controlled High Density Electric Current Field, Mater. Sci. Eng. A, 2012, 533(1), p 38–42CrossRefGoogle Scholar
  25. 25.
    J. Kuang, X. Li, X. Ye, J. Tang, H. Liu, J. Wang, and G. Tang, Microstructure and Texture Evolution of Magnesium Alloys During Electropulse Treatment, Metall. Mater. Trans. A, 2015, 46(4), p 1789–1804CrossRefGoogle Scholar
  26. 26.
    J. Kuang, X. Du, X. Li, Y. Yang, A.A. Luo, and G. Tang, Athermal influence of Pulsed Electric Current on the Twinning Behavior of Mg-3Al-1Zn Alloy During Rolling, Scr. Mater., 2016, 114, p 151–155CrossRefGoogle Scholar
  27. 27.
    A. Rahnama and R.S. Qin, The Effect of Electropulsing on the Interlamellar Spacing and Mechanical Properties of a Hot-Rolled 0.14% Carbon Steel, Mater. Sci. Eng. A, 2015, 627, p 145–152CrossRefGoogle Scholar
  28. 28.
    L. Guan, G. Tang, Y. Jiang, and P.K. Chu, Texture Evolution in Cold-Rolled AZ31 Magnesium Alloy During Electropulsing Treatment, J. Alloys Compd., 2009, 487(1–2), p 309–313CrossRefGoogle Scholar
  29. 29.
    R.F. Zhu, G.Y. Tang, S.Q. Shi, M.W. Fu, and V.E. Gromov, Effect of Electropulsing Treatment on the Microstructure and Superelasticity of TiNi Alloy, Appl. Phys. A, 2013, 111(4), p 1195–1201CrossRefGoogle Scholar
  30. 30.
    V.E. Gromov, Y.F. Ivanov, V.V. Sizov, S.V. Vorob’Ev, and S.V. Konovalov, Increase in the Fatigue Durability of Stainless Steel by Electron-Beam Surface Treatment, J. Surf. Investig. X-ray Synchrotron Neutron Tech, 2013, 7(1), p 94–98CrossRefGoogle Scholar
  31. 31.
    R.S. Qin, A. Rahnama, W.J. Lu, X.F. Zhang, and B. Elliottbowman, Electropulsed Steels, Mater. Sci. Tech-Lond, 2014, 30(9), p 1040CrossRefGoogle Scholar
  32. 32.
    H. Wang, G. Song, and G. Tang, Evolution of Surface Mechanical Properties and Microstructure of Ti 6Al 4V Alloy Induced by Electropulsing-Assisted Ultrasonic Surface Rolling Process, J. Alloys Compd., 2016, 681, p 146–156CrossRefGoogle Scholar
  33. 33.
    H. Wang, G. Song, and G. Tang, Effect of Electropulsing on Surface Mechanical Properties and Microstructure of AISI, 304 Stainless Steel During Ultrasonic Surface Rolling Process, Mater. Sci. Eng. A, 2016, 662, p 456–467CrossRefGoogle Scholar
  34. 34.
    Y. Fu, N.L. Loh, A.W. Batchelor, D. Liu, X. Zhu, J. He, and K. Xu, Improvement in Fretting Wear and Fatigue Resistance of Ti-6Al-4V by Application of Several Surface Treatments and Coatings, Surf. Coat. Technol., 1998, 106, p 193–197CrossRefGoogle Scholar
  35. 35.
    G. Li, S.G. Qu, Y.X. Pan, and X.Q. Li, Effects of the Different Frequencies and Loads of Ultrasonic Surface Rolling on Surface Mechanical Properties and Fretting Wear Resistance of HIP Ti-6Al-4V Alloy, Appl. Surf. Sci., 2016, 389, p 324–334CrossRefGoogle Scholar
  36. 36.
    A. Amanov, J.H. Kim, Y.S. Pyun, T. Hirayama, and M. Hino, Wear Mechanisms of Silicon Carbide Subjected to Ultrasonic Nanocrystalline Surface Modification Technique, Wear, 2015, 332–333, p 891–899CrossRefGoogle Scholar
  37. 37.
    D.H. Jeong, U. Erb, K.T. Aust, and G. Palumbo, The Relationship Between Hardness and Abrasive Wear Resistance of Electrodeposited Nanocrystalline Ni-P Coatings, Scr. Mater., 2003, 48, p 1067–1072CrossRefGoogle Scholar
  38. 38.
    A. Amanov, I.S. Cho, D.E. Kim, and Y.S. Pyun, Fretting Wear and Friction Reduction of CP Titanium And Ti-6Al-4V Alloy by Ultrasonic Nanocrystalline Surface Modification, Surf. Coat. Technol., 2012, 207(21), p 135–142CrossRefGoogle Scholar
  39. 39.
    Q. Xu, G. Tang, and Y. Jiang, Thermal and Electromigration Effects of Electropulsing on Dynamic Recrystallization in Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, 2011, 528(13–14), p 4431–4436CrossRefGoogle Scholar
  40. 40.
    Y.H. Zhu, S. To, W.B. Lee, X.M. Liu, Y.B. Jiang, and G.Y. Tang, Effects of Dynamic Electropulsing on Microstructure and Elongation of a Zn-Al Alloy, Mater. Sci. Eng. A, 2009, 501(1), p 125–132CrossRefGoogle Scholar
  41. 41.
    G. Tang, J. Zhang, M. Zheng, J. Zhang, W. Fang, and Q. Li, Experimental Study of Electroplastic Effect on Stainless Steel Wire 304L, Mater. Sci. Eng. A, 2000, 281(1–2), p 263–267CrossRefGoogle Scholar

Copyright information

© ASM International 2018

Authors and Affiliations

  • Yongda Ye
    • 1
    • 2
  • Haibo Wang
    • 1
  • Guoyi Tang
    • 1
  • Guolin Song
    • 1
  1. 1.Advanced Materials Institute, Graduate School at ShenzhenTsinghua UniversityShenzhenPeople’s Republic of China
  2. 2.School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations