Skip to main content
Log in

Static Recrystallization Behavior of Z12CN13 Martensite Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to increase the hot workability and provide proper hot forming parameters of forging Z12CN13 martensite stainless steel for the simulation and production, the static recrystallization behavior has been studied by double-pass hot compression tests. The effects of deformation temperature, strain rate and inter-pass time on the static recrystallization fraction by the 2% offset method are extensively studied. The results indicate that increasing the inter-pass time and the deformation temperature as well as strain rate appropriately can increase the fraction of static recrystallization. At the temperature of 1050-1150 °C, inter-pass time of 30-100 s and strain rate of 0.1-5 s−1, the static recrystallization behavior is obvious. In addition, the kinetics of static recrystallization behavior of Z12CN13 steel has been established and the activation energy of static recrystallization is 173.030 kJ/mol. The substructure and precipitates have been studied by TEM. The results reveal that the nucleation mode is bulging at grain boundary. Undissolved precipitates such as MoNi3 and Fe3C have a retarding effect on the recrystallization kinetics. The effect is weaker than the accelerating effect of deformation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. N. Li, Y. Luo, X. Xia, and H. Du, Research on the Domestic Materials of Forging Z12CN13 Stainless Steel for Hold-Down Spring of Reactor, Energy Materials, Wiley, Xi’an, 2014, p 515–521

    Google Scholar 

  2. A.N. Isfahany, H. Saghafian, and G. Borhani, The Effect of Heat Treatment on Mechanical Properties and Corrosion Behavior of AISI420 Martensitic Stainless Steel, J. Alloys Compd., 2011, 509, p 3931–3936

    Article  Google Scholar 

  3. M.C. Tsai, C.S. Chiou, J.S. Du, and J.R. Yang, Phase Transformation in AISI, 410 Stainless Steel, Mater. Sci. Eng. A, 2002, 332, p 1–10

    Article  Google Scholar 

  4. D. Nakhaie and M.H. Moayed, Pitting Corrosion of Cold Rolled Solution Treated 17-4 PH Stainless Steel, Corros. Sci., 2014, 80, p 290–298

    Article  Google Scholar 

  5. S.P. Lu, M.P. Qin, and W.C. Dong, Highly Efficient TIG Welding of Cr13Ni5Mo Martensitic Stainless Steel, J. Mater. Process. Technol., 2013, 213, p 229–237

    Article  Google Scholar 

  6. V. Angelini, I. Boromei, C. Martini, C.J. Scheuer, R.P. Cardoso, and S.F. Brunatto, Dry Sliding Behavior (Block-on-Ring Tests) of AISI, 420 Martensitic Stainless Steel, Surface Hardened by Low Temperature Plasma-Assisted Carburizing, Tribol. Int., 2016, 103, p 555–565

    Article  Google Scholar 

  7. Z. Zeng et al., Dynamic Recrystallization Behavior of a Heat-Resistant Martensitic Stainless Steel 403Nb During Hot Deformation, J. Mater. Process. Technol., 2011, 27, p 913–919

    Google Scholar 

  8. G.R. Ebrahimi, A. Momeni, M. Jahazi, and P. Bocher, Dynamic Recrystallization and Precipitation in 13Cr Super-Martensitic Stainless Steels, Metall. Mater. Trans. A, 2014, 45, p 2219–2231

    Article  Google Scholar 

  9. G.R. Ebrahimi, H. Keshmiri, M. Mazinani, A. Maldar, and M. Haghshenas, Multi-Stage Thermomechanical Behavior of AISI 410 Martensitic Steel, Mater. Sci. Eng. A, 2013, 559, p 520–527

    Article  Google Scholar 

  10. X. Chun, Q. Sun, and X. Chen, Research on Transformation Mechanism and Microstructure Evolution Rule of Vanadium-Nitrogen Microalloyed Steels, Mater. Des., 2007, 28, p 2523–2527

    Article  Google Scholar 

  11. Y. Guo, Z. Wang, and L. Wei, Investigation on the Recrystallization Mechanism in Warm-Rolled Ti-IF Steel, J. Mater. Eng. Perform., 2014, 23, p 1214–1222

    Article  Google Scholar 

  12. L.X. Li, D.S. Peng, J.A. Liu, and Z.Q. Liu, An Experiment Study of the Lubrication Behavior of Graphite in Hot Compression Tests of Ti-6Al-4V Alloy, J. Mater. Process. Technol., 2001, 112, p 1–5

    Article  Google Scholar 

  13. Y.G. Liu, J. Liu, M.Q. Li, and H. Lin, The Study on Kinetics of Static Recrystallization in the Two-Stage Isothermal Compression of 300 M Steel, Comput. Mater. Sci., 2014, 84, p 115–121

    Article  Google Scholar 

  14. H. Mao, R. Zhang, L. Hua, and F. Yin, Study of Static Recrystallization Behaviors of GCr15 Steel Under Two-Pass Hot Compression Deformation, J. Mater. Eng. Perform., 2015, 24, p 930–935

    Article  Google Scholar 

  15. Z-x. Xie, H-y. Gao, J. Wang, Y. Yu, Y. Fang, and B-d. Sun, Static Recrystallization Behavior of Twin Roll Cast Low-Carbon Steel Strip, J. Iron. Steel Res. Int., 2011, 18, p 45–51

    Article  Google Scholar 

  16. R. Ma, K. Fang, J.G. Yang, X.S. Liu, and H.Y. Fang, Grain Refinement of HAZ in Multi-Pass Welding, J. Mater. Process. Technol., 2014, 214, p 1131–1135

    Article  Google Scholar 

  17. W. Xianping, W. Zheng, Z. Song, T. Lei, Q. Yong, and Q. Xie, Static Recrystallization Behavior of Inconel 718 Alloy During Thermal Deformation, J. Wuhan Univ. Technol., 2014, 29, p 379–383

    Article  Google Scholar 

  18. A.I. Fernández, B. López, and J.M. Rodr Guez-Ibabe, Relationship Between the Austenite Recrystallized Fraction and the Softening Measured from the Interrupted Torsion Test Technique, Scr. Matre., 1999, 40, p 543–549

    Article  Google Scholar 

  19. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo, EBSD Study of a Hot Deformed Austenitic Stainless Steel, Mater. Sci. Eng. A, 2012, 538, p 236–245

    Article  Google Scholar 

  20. A. Rollett, F.J. Humphreys, G.S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, Amsterdam, 2004, p 215–269

    Google Scholar 

  21. H.R. Shercliff, A.M. Lovatt, D.J. Jensen, and J.H. Beynon, Modelling of Microstructure Evolution in Hot Deformation [and Discussion], Philos. Trans. R. Soc. A., 1999, 357, p 1621–1643

    Article  Google Scholar 

  22. C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong, Effect of Microstructural Refinement on the Toughness of Low Carbon Martensitic Steel, Scr. Mater., 2008, 58, p 492–495

    Article  Google Scholar 

  23. C.G. A-Mateo, B. López, and J.M. Rodriguez-Ibabe, Static Recrystallization Kinetics in Warm Worked Vanadium Microalloyed Steels, Mater. Sci. Eng. A, 2001, 303, p 216–225

    Article  Google Scholar 

  24. E.J. Palmiere, C.I. Garcia, and A.J. DeArdo, The Influence of Niobium Supersaturation in Austenite on the Static Recrystallization Behavior of Low Carbon Microalloyed Steels, Metall. Mater. Trans. A, 1996, 27, p 951–960

    Article  Google Scholar 

  25. Y. Liu, Effects of Strain Rate on Dislocation for TA15 Alloy During Hot Compressive Deformation, J. Wuhan Univ. Technol., 2011, 26, p 186–189

    Article  Google Scholar 

  26. F.Y. Ma, K. Jin, H. Wang, W.J. Pei, X.B. Tang, and J. Tao, Flow Stress Analysis and Hot Bending of P11 Alloy Steel, J. Mater. Eng. Perform., 2016, 25, p 3725–3736

    Article  Google Scholar 

  27. E. Dupin, A. Yanagida, and J. Yanagimoto, Modeling Static and Dynamic Kinetics of Microstructure Evolution in Type 316 Stainless Stee, Steel Res. Int., 2014, 85, p 1099–1108

    Article  Google Scholar 

  28. X. Yang, A. He, C. Wu, S. Li, H. Zhang, and X. Wang, Study of Static Recrystallization Behavior of a Nitrogen-Alloyed Ultralow Carbon Austenitic Stainless Steel by Experiment and Simulation, J. Mater. Eng. Perform., 2015, 24, p 4346–4357

    Article  Google Scholar 

  29. S. Cho and Y. Yoo, Static Recrystallization Kinetics of 304 Stainless Steels, J. Mater. Sci., 2001, 36, p 4273–4278

    Article  Google Scholar 

  30. Y.C. Lin, M. Chen, and J. Zhong, Study of Static Recrystallization Kinetics in a Low Alloy Steel, Computat. Mater. Sci., 2008, 44, p 316–321

    Article  Google Scholar 

  31. C. Sang-Hyun, K.B. Kang, and J.J. Jonas, The Dynamic, Static and Metadynamic Recrystallization of a Nb-Microalloyed Steel, T. Iron Steel I: Jpn., 2001, 41, p 63–69

    Google Scholar 

  32. M. Jin, B. Lu, X-g. Liu, H. Guo, H-p. Ji, and B-f. Guo, Static Recrystallization Behavior of 316LN Austenitic Stainless Steel, J. Iron. Steel Res. Int., 2013, 20, p 67–72

    Article  Google Scholar 

  33. Z.H. Zhang, Y.N. Liu, X.K. Liang, and Y. She, The Effect of Nb on Recrystallization Behavior of a Nb Micro-Alloyed Steel, Mater. Sci. Eng. A, 2008, 474, p 254–260

    Article  Google Scholar 

  34. D.Q. Dong, F. Chen, and Z.S. Cui, Static Recrystallization Behavior of SA508-III, Steel During Hot Deformation, J. Iron. Steel Res. Int., 2016, 23, p 466–474

    Article  Google Scholar 

  35. A.M. Elwazri, P. Wanjara, and S. Yue, Metadynamic and Static Recrystallization of Hypereutectoid Steel, ISIJ Int., 2003, 43, p 1080–1088

    Article  Google Scholar 

  36. F. Chen, D. Sui, and Z. Cui, Static Recrystallization of 30Cr2Ni4MoV Ultra-Super-Critical Rotor Steel, Mater. Eng. Perform., 2014, 23, p 3034–3041

    Article  Google Scholar 

Download references

Acknowledgments

The present study has been sponsored by Natural Science Foundation of Shanghai (15ZR1440500), Shanghai Sailing Program (17YF1407100) and Shanghai Municipal Civil-Military Integrated Special Projects (2016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bing Zhou or Yan-hui Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Zhou, B., Li, Rb. et al. Static Recrystallization Behavior of Z12CN13 Martensite Stainless Steel. J. of Materi Eng and Perform 26, 4157–4165 (2017). https://doi.org/10.1007/s11665-017-2847-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2847-8

Keywords

Navigation