Skip to main content
Log in

Vacuum Brazing Diamond Grits with Cu-based or Ni-based Filler Metal

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Diamond grits were brazed using Cu-Sn-Cr and Ni-Cr-B-Si filler metals, and the brazed grits were examined for microstructure (SEM, EDS, XRD), microhardness, and compression strength. Results showed that the microstructure of the Cu-based filler metal was uniform and consisted of α-Cu + (α-Cu + δ). Its wettability to the diamond was better than Ni-based filler due to the formation of a thin carbide reaction layer that improved the bond strength between the diamond and steel. The Cu-based filler led to reduced thermal damage to the diamond. The Cr in the filler metal diffused to the steel substrate to form a reaction layer at the filler/steel substrate interface. The microhardness of the Ni filler metal (810-830 HV0.3) was significantly higher than that of Cu filler metal (170-230 HV0.3). The compressive load values of the diamond grits brazed with Cu-based or Ni-based filler metal were 93.7 and 49.2% of the original diamond, and the TI values were 83.7 and 59.8% of the original diamond. Grinding experiments for failure mode in monolayer tools revealed that the tools brazed with Cu-based filler metal had a lower macro-fracture ratio than those brazed using the Ni-based filler.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. C.M. Sung, Brazed Diamond Grid: A Revolutionary Design for Diamond Saw, Diam. Relat. Mater., 1999, 8, p 1540–1543

    Article  Google Scholar 

  2. A.K. Chattopadhyay, L. Chollet, and H.E. Hintermann, On Performance of Brazed-Bond Monolayer Diamond Grinding Wheel, Ann. CIRP, 1991, 40, p 347–350

    Article  Google Scholar 

  3. W.F. Ding, J.H. Xu, Y.C. Fu, B. Xiao, H.H. Su, and H.J. Xu, Interfacial Reaction Between Cubic Boron Nitride and Ti During Active Brazing, J. Mater. Eng. Perform., 2006, 15(3), p 365–369

    Article  Google Scholar 

  4. W.F. Ding, J.H. Xu, Z.Z. Chen, Q. Miao, and C.Y. Yang, Interface Characteristics and Fracture Behavior of Brazed Polycrystalline CBN Grains Using Cu-Sn-Ti Alloy, Mater. Sci. Eng., A, 2013, 559, p 629–634

    Article  Google Scholar 

  5. C. Artini, M.L. Muolo, and A. Passerone, Diamond-Metal Interfaces in Cutting Tools: A Review, J. Mater. Sci., 2012, 47, p 3252–3264

    Article  Google Scholar 

  6. W.F. Ding, Q. Miao, J.H. Xu, C.Y. Ma, B. Zhao, and C.Y. Yang, Joining Interface and Grain Fracture of Single-Layer Brazed Grinding Wheels with Binderless CBN Grains, Int. J. Adv. Manuf. Technol., 2013, 68, p 1261–1266

    Article  Google Scholar 

  7. W.F. Ding, J.H. Xu, M. Shen, H.H. Su, Y.C. Fu, and B. Xiao, Joining of CBN Abrasive Grains to Medium Carbon Steel with Ag-Cu/Ti Powder Mixture as Active Brazing Alloy, Mater. Sci. Eng., 2006, A430, p 301–306

    Article  Google Scholar 

  8. C.H. Lee, J.O. Ham, M.S. Song, and C.H. Lee, The Interfacial Reaction between Diamond Grit and Ni-Based Brazing Filler Metal, Mater. Trans., 2007, 48(4), p 889–891

    Article  Google Scholar 

  9. C. Leinenbach, R. Transchel, K. Gorgievski, F. Kuster, H.R. Elsener, and K. Wegener, Microstructure and Mechanical Performance of Cu-Sn-Ti–Based Active Braze Alloy Containing In Situ Formed Nano-Sized TiC Particles, J. Mater. Eng. Perform., 2015, 24, p 2042–2050

    Article  Google Scholar 

  10. T. Yamazaki and A. Suzumura, Reaction Products at Brazed Interface between Ag-Cu-V Filler Metal and Diamond (111), J. Mater. Sci., 2006, 41, p 6409–6416

    Article  Google Scholar 

  11. Y.M. Zhou, F.L. Zhang, and Z.C. Xu, Cr Powder-Activated Induction Brazing of Diamond Grits with Ag-Cu-Zn Alloy, Mater. Manuf. Processes, 2008, 23, p 352–356

    Article  Google Scholar 

  12. C.Y. Wang, Y.M. Zhou, F.L. Zhang, and Z.C. Xu, Interfacial Microstructure and Performance of Brazed Diamond Grits with Ni-Cr-P Alloy, J. Alloy. Compd., 2009, 476, p 884–888

    Article  Google Scholar 

  13. C.Y. Ma, W.F. Ding, J.H. Xu, and Y.C. Fu, Influence of Alumina Bubble Particles on Microstructure and Mechanical Strength in Porous Cu-Sn-Ti Metals, Mater. Des., 2015, 65, p 50–56

    Article  Google Scholar 

  14. Z. Li, W.F. Ding, L. Shen, X.X. Xi, and Y.C. Fu, Comparative Investigation on High-speed Grinding of TiCp/Ti–6Al–4 V Particulate Reinforced Titanium Matrix Composites with Single-layer Electroplated and Brazed CBN Wheels, Chin. J. Aeronaut., 2016, 29(5), p 1414–1424

    Article  Google Scholar 

  15. C. Artini, M.L. Muolo, and A. Passerone, Diamond-Metal Interfaces in Cutting Tools: A Review, J. Mater. Sci., 2012, 47, p 3252–3264

    Article  Google Scholar 

  16. S.J. Zhang, S. To, and G.Q. Zhang, Diamond Tool Wear in Ultra-precision Machining, Int. J. Adv. Manuf. Technol., 2016, 88(1–4), p 613–641

    Google Scholar 

  17. Y. Chen, Y.C. Fu, H.H. Su, J.H. Xu, and H.J. Xu, The Effects of Solder Alloys on The Morphologies and Mechanical Properties of Brazed Diamond Grits, Int. J. Refract. Met. Hard Mater., 2014, 42, p 23–29

    Article  Google Scholar 

  18. B.J. Ma and H.D. Zhu, A Study on Induction Brazing of Diamond Grits Using both Amorphous and Crystalline Ni-Based Filler alloy, Int. J. Adv. Manuf. Technol., 2016, 86, p 1607–1613

    Article  Google Scholar 

  19. S. Buhl, C. Leinenbach, R. Spolenak, and K. Wegener, Failure Mechanisms and Cutting Characteristics of Brazed Single Diamond Grains, Int. J. Adv. Manuf. Technol., 2013, 66, p 775–786

    Article  Google Scholar 

  20. S.F. Huang, H.L. Tsai, and S.T. Lin, Laser Brazing of Diamond Grits Using a Cu–15Ti–10Sn Brazing Alloy, Mater. Trans., 2002, 43(10), p 2604–2608

    Article  Google Scholar 

  21. M. Nomura, T. Ichimori, and C. Iwamoto, Structure of Wetting Front in the Ag-Cu-Ti/SiC Reactive System, J. Mater. Sci., 2000, 35(16), p 3593–3958

    Article  Google Scholar 

  22. M. Nomura, C. Iwamoto, and S.I. Tanaka, Nanostructure of Wetting Triple Line on A Ag-Cu-Ti/Si3N4 Reactive System, Acta Mater., 1999, 47, p 407–413

    Article  Google Scholar 

  23. S. Buhl, C. Leinenbach, R. Spolenak, and K. Wegener, Microstructure, Residual Stresses and Shear Strength of Diamond-Steel-Joints Brazed with A Cu-Sn-Based Active Filler alloy, Int. J. Refract. Met. Hard Mater., 2012, 30, p 16–24

    Article  Google Scholar 

  24. Hiroaki Okamoto, Supplemental Literature Review of Binary Phase Diagrams: Bi-Ce, Bi-Er, C-Ce, C-La, C-Pr, Cd-I, Cr-Cu, Cu-Er, Er-Sb, F-Sm, F-Yb, and Fe-Gd, JPEDAV, 2013, 34, p 350–362

    Article  Google Scholar 

  25. Y.L. Yuan and Z.G. Li, Microstructure and Wear Performance of High Volume Fraction Carbide M7C3 Reinforced Fe-based Composite Coating Fabricated by Plasma Transferred Arc Welding, J. Wuhan Univ. Technol. Mater., 2014, 29(5), p 1028–1035

    Article  Google Scholar 

  26. J.B. Lu, P. Meng, B. Zhao, and J.J. Liu, Nucleation and Growth of Cr7C3 of Brazing Diamond with Ni-Cr Alloy in Protective Atmosphere Furnace, Adv. Mater. Res., 2012, 463–464, p 505–509

    Google Scholar 

  27. L. Jinbin and X. Jiuhua, Interface Microstructure and Thermal Stress of Diamond Brazing with Ag-Cu-Ti Filler, Rare Met. Mater. Eng., 2009, 38, p 642–646 (in Chinese)

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the fund projects of Suzhou University of Science and Technology of China (No. XKZ201501) and fund of the State Key Laboratory of Advanced Brazing Filler Metals and Technology of China (No. SKLABFMT201003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinbin Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Lu, J., Li, Y. et al. Vacuum Brazing Diamond Grits with Cu-based or Ni-based Filler Metal. J. of Materi Eng and Perform 26, 4112–4120 (2017). https://doi.org/10.1007/s11665-017-2804-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-017-2804-6

Keywords

Navigation