Hybrid SnO2@NiCo2O4 Heterostructure With Improved Capacitive Performance

  • 4 Accesses


In this paper, a two-step, solution-based method and post-calcination were employed to coat NiCo2O4 nanowires arrays onto dense SnO2 thin films which were grown on Ni foam substrates. Owing to the low charge transfer resistance and good electronic conductivity of the SnO2 thin films, the specific SnO2 thin films were used as the supporting backbone. X-ray diffraction and elemental mapping were applied to demonstrate the existence of Ni, Co, O, Sn while the hierarchical structure and morphology of SnO2@NiCo2O4 were analyzed by field emission scanning electron microscopy. The electrochemical performance of SnO2@NiCo2O4 was also investigated in a three-electrode system. The as-formed SnO2@NiCo2O4 electrode had outstanding electrochemical performance (1.49 F cm−2 at 1 mA cm−2) and good cycling stability (retaining 86% after 2000 cycles). On the one hand, the excellent pseudocapacitive performance was mainly due to the addition of the SnO2 thin films, which served as a conducting oxide thin film to provide low charge transfer resistance. On the other hand, the SnO2 thin films offered a more effective place for the growth of NiCo2O4 nanowires arrays than the bare Ni foam substrates. The perfect electrochemical performance of these hybrid nanomaterials showed their potential in supercapacitor electrodes.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.


  1. 1.

    J. Yan, Q. Wang, T. Wei, and Z.J. Fan, Adv. Energy Mater. 4, 1 (2013).

  2. 2.

    G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

  3. 3.

    M. Yang and H. Xia, Sci. China: Technol. Sci 58, 1851 (2015).

  4. 4.

    C. Zhong, Y.D. Deng, W.B. Hu, J.L. Qiao, L. Zhang, and J.J. Zhang, Chem. Soc. Rev. 21, 1 (2015).

  5. 5.

    A.L.M. Reddy, S.R. Gowda, M.M. Shaijumon, and P.M. Ajayan, Adv. Mater. 24, 5045 (2012).

  6. 6.

    Z. Chen, D. Pan, Z. Li, Z. Jiao, M. Wu, C.H. Shek, C.M. Wu, and J.K. Lai, Chem. Rev. 114, 7442 (2014).

  7. 7.

    X. Li and B. Wei, Nano. Energy 2, 159 (2013).

  8. 8.

    G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Nano. Energy 2, 213 (2013).

  9. 9.

    Z. Yu, L. Tetard, L. Zhai, and J. Thomas, Energy Environ. Sci. 8, 702 (2015).

  10. 10.

    H. Wang, W. Zhang, H. Chen, and W. Zheng, Sci. China: Technol. Sci 58, 1779 (2015).

  11. 11.

    H. Jiang, J. Ma, and C. Li, Adv. Mater. 24, 4197 (2012).

  12. 12.

    M. Toupin, T. Brousse, and D. Bélanger, Chem. Mater. 14, 3946 (2002).

  13. 13.

    J.Y. Lee, K. Liang, K.H. An, and Y.H. Lee, Synth. Met. 150, 153 (2005).

  14. 14.

    S. Passerini, J.J. Ressler, D.B. Le, B.B. Owens, and W.H. Smyrl, Electrochim. Acta 44, 2209 (1999).

  15. 15.

    M. Sathiya, A.S. Prakash, K. Ramesha, J.-M. Tarascon, and A.K. Shukla, J. Am. Chem. Soc. 133, 1629 (2011).

  16. 16.

    Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. Xia, H. Dong, X. Li, and L. Zhang, Int. J. Hydrogen Energy 34, 4889 (2009).

  17. 17.

    G.-Y. Yu, W.-X. Chen, Y.-F. Zheng, J. Zhao, X. Li, and Z.-D. Xu, Mater. Lett. 60, 2453 (2006).

  18. 18.

    G. Gao, H.B. Wu, S. Ding, and X.W. Lou, Small 11, 432 (2015).

  19. 19.

    S. Hou, G. Zhang, W. Zeng, J. Zhu, F. Gong, F. Li, and H. Duan, A.C.S. Appl. Mater. Interfaces 6, 13564 (2014).

  20. 20.

    X. Sun, Q. Li, Y. Lu, and Y. Mao, Chem. Commun. 49, 4456 (2013).

  21. 21.

    Y. Liu, Y. Jiao, Z.L. Zhang, F.Y. Qu, A. Umar, and X. Wu, A.C.S. Appl. Mater. Interfaces. 6, 2174 (2014).

  22. 22.

    Y. Liu, Y. Jiao, B. Yin, S. Zhang, F.Y. Qu, and X. Wu, J. Mater. Chem. A 3, 3676 (2015).

  23. 23.

    J. Yang, M. Ma, C. Sun, Y. Zhang, W. Huang, and X. Dong, J. Mater. Chem. A 3, 1258 (2015).

  24. 24.

    L. Zhang, H.B. Wu, B. Liu, and X.W. Lou, Energy Environ. Sci. 7, 1013 (2014).

  25. 25.

    X.W. Lou, C.M. Li, and L.A. Archer, Adv. Mater. 21, 2536 (2009).

  26. 26.

    J.S. Chen and X.W. Lou, Small 9, 1877 (2013).

  27. 27.

    H.K. Wang and A.L. Rogach, Chem. Mater. 26, 123 (2014).

  28. 28.

    X. Meng, M. Zhou, X. Li, J. Yao, F. Liu, H. He, P. Xiao, and Y. Zhang, Electrochim. Acta 109, 20 (2013).

  29. 29.

    S. Ding, D. Luan, F.Y. Boey, J.S. Chen, and X.W. Lou, Chem. Commun. 47, 7155 (2011).

  30. 30.

    X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, and L.A. Archer, Adv. Mater. 18, 2325 (2006).

  31. 31.

    J.Y. Kim, J.S. Kang, J.Y. Shin, J. Kim, S.J. Han, J. Park, Y.S. Min, M.J. Ko, and Y.E. Sung, Nanoscale 7, 8368 (2015).

  32. 32.

    Y. Luo, D. Kong, J. Luo, S. Chen, D. Zhang, K. Qiu, X. Qi, H. Zhang, C.M. Li, and T. Yu, RSC. Adv. 3, 14413 (2013).

  33. 33.

    K. Karthikeyan, S. Amaresh, D. Kalpana, R.K. Selvan, and Y.S. Lee, J. Phys. Chem. Solids 73, 363 (2012).

  34. 34.

    L. Li, Z.A. Hu, N. An, Y.Y. Yang, Z.M. Li, and H.Y. Wu, J. Phys. Chem. C 118, 22865 (2014).

  35. 35.

    S.N. Pusawale, P.R. Deshmukh, and C.D. Lokhande, Appl. Surf. Sci. 257, 9498 (2011).

  36. 36.

    Y. Zhang, Z. Hu, Y. Liang, Y. Yang, N. An, Z. Li, and H. Wu, J. Mater. Chem. A 3, 15057 (2015).

  37. 37.

    D.-W. Choi and J.-S. Park, Surf. Coat. Technol. 259, 238 (2014).

  38. 38.

    F. Fang, Y. Zhang, X. Wu, Q. Shao, and Z. Xie, Mate. Res. Bull. 68, 240 (2015).

  39. 39.

    H. Chen, J. Jiang, L. Zhang, T. Qi, D. Xia, H. Wan, and J. Power, Sources 248, 28 (2014).

  40. 40.

    Q. Zhou, J. Xing, Y. Gao, X. Lv, Y. He, Z. Guo, and Y. Li, ACS Appl. Mater. Interfaces. 6, 11394 (2014).

  41. 41.

    L. Shen, L. Yu, X.Y. Yu, X. Zhang, and X.W. Lou, Angew. Chem. 54, 1868 (2015).

  42. 42.

    R. Zou, M.F. Yuen, Z. Zhang, J. Hu, and W. Zhang, J. Mater. Chem. A 3, 1717 (2015).

  43. 43.

    J. Xiao and S. Yang, RSC. Adv. 1, 588 (2011).

  44. 44.

    X.Y. Liu, Y.Q. Zhang, X.H. Xia, S.J. Shi, Y. Lu, X.L. Wang, C.D. Gu, J.P. Tu, and J. Power, Sources 239, 157 (2013).

  45. 45.

    X. Wang, X. Han, M. Lim, N. Singh, C.L. Gan, M. Jan, and P.S. Lee, J. Phys. Chem. C 116, 12448 (2012).

  46. 46.

    H.B. Wu, H. Pang, and X.W. Lou, Energy Environ. Sci. 6, 3619 (2013).

  47. 47.

    R.R. Salunkhe, K. Jang, S. Lee, and H. Ahn, RSC Adv. 2, 3190 (2012).

  48. 48.

    Q.F. Wang, X.F. Wang, B. Liu, G. Yu, X.J. Hou, D. Chen, and G.Z. Shen, J. Mater. Chem. A 1, 2468 (2013).

  49. 49.

    W.W. Zhou, D.Z. Kong, X.T. Jia, C.Y. Ding, C.W. Cheng, and G.W. Wen, J. Mater. Chem. A 2, 6310 (2014).

  50. 50.

    Z.H. Yang, X. Zhu, K. Wang, G. Ma, H. Cheng, and F.F. Xu, Appl. Surf. Sci. 347, 690 (2015).

  51. 51.

    J. Zhang, H. Gao, M.Y. Zhang, Q. Yang, and H.X. Chuo, Appl. Surf. Sci. 349, 870 (2015).

Download references


This work was financially supported by the National Natural Science Foundation of China (No. 21266018, 21566030), Science and technology projects of Science and Technology Department of Inner Mongolia Autonomous Region, P. R. China (Nos. 20110401 and 20130409), the Natural Science Foundation of Inner Mongolia, P. R. China (No. 2010MS0218), Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region (No. NJYT-15-A04), and Ministry of Science and Technology China-South Africa Joint Research Program (No.CS08-L15)

Author information

Correspondence to Lijun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 656 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Y., Han, W. & Li, L. Hybrid SnO2@NiCo2O4 Heterostructure With Improved Capacitive Performance. Journal of Elec Materi (2020).

Download citation


  • Heterostructure
  • binderless
  • supercapacitor
  • SnO2@NiCo2O4