Advertisement

Effects of Co-Doped B and Al on the Improvement of Electrical Properties of Ga and P Contaminated Upgraded Metallurgical-Grade Silicon Materials

  • 14 Accesses

Abstract

High-performance p-type silicon target materials of Co-doped B and Al elements were produced using Ga and P contaminated upgraded metallurgical-grade silicon (UMG-Si) at the industrial scale. The purity of silicon ingots is above 5.5 N after the directional solidification process, which meets market demand. The segregation behavior of elements and compensation effect on the resistivity are discussed. The effective segregation coefficients of B, Al, Ga, and P for ingot No. 1 were approximately 0.66, 0.14, 0.38, and 0.49, respectively. The segregation coefficients of P, Ga, and Al become larger, the segregation effect tends to become smaller, which is attributed to the doped and contaminated elements that have the recombination effect on the holes and electrons. The distribution of resistivity can be regulated precisely by the compensation difference [NAND] along the solidified fraction. The mean resistivity of the ingots is approximately 0.013 Ω cm. Prolonging melting time is conducive to the uniform distribution of doping elements.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

References

  1. 1.

    M. Boumaour, S. Sali, A. Bahfir, S. Kermadi, L. Zougar, and N. Ouarab, J. Electron. Mater. 45, 3929 (2016).

  2. 2.

    U. Toçoğlu, G. Hatipoğlu, M. Alaf, F. Kayiş, and H. Akbulut, Appl. Surf. Sci. 389, 507 (2016).

  3. 3.

    H.J. Zhao, L.H. Yu, C.Y. Mu, and F.X. Ye, Mater. Charact. 117, 65 (2016).

  4. 4.

    P.T. Li, K. Wang, S.Q. Ren, D.C. Jiang, J.Y. Li, Y. Tan, L. Zhang, F. Wang, and X.F. Zhang, Mater. Sci.-Mater. El. 28, 1 (2017).

  5. 5.

    P.T. Li, K. Wang, D.C. Jiang, S.Q. Ren, Y. Tan, G.Y. An, L. Zhang, X.L. Guo, and F. Wang, Inorg. Mater. 32, 281 (2017).

  6. 6.

    S.Q. Ren, P.T. Li, D.C. Jiang, S. Shi, J.Y. Li, S.T. Wen, and Y. Tan, Vacuum 115, 108 (2015).

  7. 7.

    X. Yang, W.H. Ma, G.Q. Lv, K.X. Wei, D.T. Chen, S.Y. Li, D.M. Zheng, and Z.J. Chen, Appl. Therm. Eng. 106, 890 (2016).

  8. 8.

    X.Y. Mei, W.H. Ma, K.X. Wei, and Y.N. Dai, Adv. Mater. Res. 79, 1213 (2009).

  9. 9.

    K.P. Jeong and Y.K. Kim, Sol. Energy Mater. Sol. Cells 107, 201 (2012).

  10. 10.

    M. Forster, E. Fourmond, R. Einhaus, H. Lauvray, J. Kraiem, and M. Lemiti, Phys. Status Solidi 8, 678 (2011).

  11. 11.

    X.M. Huang, M. Arivanandhan, R. Gotoh, T. Hoshikawa, and S. Uda, J. Cryst. Growth 310, 3335 (2008).

  12. 12.

    T. Bartel, K. Lauer, M. Heuer, M. Kaes, M. Walerysiak, F. Gibaja, J. Lich, J. Bauer, and F. Kirscht, Energy Proc. 27, 45 (2012).

  13. 13.

    F. Kirscht, M. Walerysiak, and M. Heuer, US 7651566 B2, P (2010).

  14. 14.

    M. Porrini, R. Scala, and V. Voronkov, J. Cryst. Growth 460, 13 (2017).

  15. 15.

    Y. Laghla, E. Scheid, H. Vergnes, and J. Couderc, Sol. Energy Mater. Sol. Cells 48, 303 (1997).

  16. 16.

    Y. Ohmura, M. Takahashi, M. Suzuki, A. Emura, N. Sakamoto, and T. Meguro, Phys. Status Solidi 235, 114 (2003).

  17. 17.

    S. Dubois, N. Enjalbert, and J.P. Garandet, Appl. Phys. Lett. 93, 032114 (2008).

  18. 18.

    P.T. Li, K. Wang, S.Q. Ren, D.C. Jiang, S. Shi, Y. Tan, F. Wang, and H. Asghar, Sol. Energy Mater. Sol. Cells 186, 50 (2018).

  19. 19.

    R. Brown and D. Kim, J. Cryst. Growth 109, 50 (1991).

  20. 20.

    J.A. Burton, R.C. Prim, and W.P. Slichter, J. Chem. Phys. 21, 1987 (1953).

  21. 21.

    A. Cuevas, M. Forster, F. Rougieux, and D. Macdonald, Energy Proc. 15, 67 (2012).

  22. 22.

    J. Libal, S. Novaglia, M. Acciarri, S. Binetti, R. Petres, J. Arumughan, R. Kopecek, and A. Prokopenko, J. Appl. Phys. 104, 104507 (2008).

  23. 23.

    X. Yang, W.H. Ma, G.Q. Lv, K.X. Wei, C. Zhang, S.Y. Li, and D.T. Chen, Metall. Mater. Trans. E 2, 39 (2015).

  24. 24.

    S. Dubois, N. Enjalbert, F. Servant, J. Kraiem, R. Monna, and J. Kraiem, 1445 23rd PVSC (2008).

Download references

Acknowledgments

The authors gratefully acknowledge financial support from the Specialized Research Fund for the National Key Research and Development Plan (Grant No. 2018YFB1500401), the National Natural Science Foundation of China (Grant Nos. 51974057 and 51404053), the Major Science and Technology Projects in Yunnan Province (Grant No. 2019ZE007) and Liaoning Province Natural Science Foundation of China (Grant No. 20180550295).

Author information

Correspondence to Pengting Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Tan, Y., Jiang, D. et al. Effects of Co-Doped B and Al on the Improvement of Electrical Properties of Ga and P Contaminated Upgraded Metallurgical-Grade Silicon Materials. Journal of Elec Materi (2020). https://doi.org/10.1007/s11664-020-07942-0

Download citation

Keywords

  • Silicon target
  • doping
  • compensation
  • segregation behavior
  • resistivity