Advertisement

Optical and Structural Characterization of Honeycomb-Like Ag2S Nanoparticles by a Simplified and Stable Wet Chemical Synthesis Method

  • S. G. Ruvalcaba-ManzoEmail author
  • R. Ramírez-Bon
  • J. Tánori
  • R. Ochoa-Landin
  • S. J. Castillo
Article

Abstract

The goal of this paper is to present a stable and new formulation route for the synthesis of silver sulfide nanoparticles with stoichiometric Ag2S composition in aqueous solution. The structural, optical, and morphological properties of Ag2S nanoparticles were studied by using characterization techniques such as ultraviolet–visible spectroscopy (UV–Vis), transmission electron microscopy and x-ray photoelectron spectroscopy (XPS). From the UV–Vis spectrum, the direct and indirect energy gap values of 3.56 and 1.89 eV were calculated, related to direct and indirect transitions of electrons, as an estimation of bandgaps. Also, an optical band gap shift with respect to bulk bandgap is observed reported in the literature and is related to nanoparticle size decrease. Furthermore, from the high-resolution transmission electron microscopy micrograph an orthorhombic crystallographic structure was determined with lattice parameters 4.77 × 6.92 × 6.88 Å and the nanoparticle surface showed a honeycomb-like interference pattern. Finally, the expected chemical composition was proved by the low- and high-resolution XPS spectra.

Keywords

Chalcogenides nanoparticles silver sulfide semiconductors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    H. Chen, B. Li, M. Zhang, K. Sun, Y. Wang, K. Peng, M. Ao, Y. Gou, and Y. Gu, Nanoscale 6, 12580 (2014).CrossRefGoogle Scholar
  2. 2.
    Y. Delgado-Beleño, C.E. Martinez-Nuñez, M. Cortez-Valadez, N.S. Flores-López, and M. Flores-Acosta, Mater. Res. Bull. 95, 385 (2018).  https://doi.org/10.1016/j.materresbull.2017.11.015.CrossRefGoogle Scholar
  3. 3.
    U.M. Jadhav, S.N. Patel, and R.S. Patil, Res. J. Chem. Sci. 3, 69 (2013).Google Scholar
  4. 4.
    Y. Zhang and Q. Wang, Mater. China 35, 17 (2016).  https://doi.org/10.7502/j.issn.1674-3962.2016.01.03.CrossRefGoogle Scholar
  5. 5.
    A.I. Sadovnikov and S.I. Gusev, J. Mater. Chem. A 5, 17676 (2017).CrossRefGoogle Scholar
  6. 6.
    M. Kristl, S. Gyergyek, and J. Kristl, Mater. Express 5, 359 (2015).CrossRefGoogle Scholar
  7. 7.
    Y. Zhao, D. Zhang, W. Shi, and F. Wang, Mater. Lett. 61, 3232 (2007).CrossRefGoogle Scholar
  8. 8.
    L. Lv and H. Wang, Mater. Lett. 121, 105 (2014).  https://doi.org/10.1016/j.matlet.2014.01.121.CrossRefGoogle Scholar
  9. 9.
    M.A. Karimi, M. Ranjbar, and A. Salmanipour, J. Saudi Chem. Soc. 21, 193 (2017).CrossRefGoogle Scholar
  10. 10.
    S. Kashida, N. Watanabe, T. Hasegawa, H. Lida, M. Mori, and S. Savrasov, Solid State Ion. 158, 167 (2003).CrossRefGoogle Scholar
  11. 11.
    S.I. Sadovnikov, Y.V. Kuznetsova, and A.A. Rempel, Nano-Struct. Nano-Objects 7, 251 (2016).  https://doi.org/10.1016/j.nanoso.2016.06.004.CrossRefGoogle Scholar
  12. 12.
    M. Ibáñez, A. Genç, R. Hasler, Y. Liu, O. Dobrozhan, O. Nazarenko, M. de la Mata, J. Arbiol, A. Cabot, and M.V. Kovalenko, ACS Nano 13, 6572 (2019).CrossRefGoogle Scholar
  13. 13.
    K. Persson, Materials Data on Ag2S (SG:63) by Materials Project. United States.  https://doi.org/10.17188/1207146.
  14. 14.
    K. Persson, Materials Data on Ag2S (SG:36) by Materials Project. United States.  https://doi.org/10.17188/1206341.
  15. 15.
    D. Santamarıa-Perez, M. Marques, R. Chulia-Jordan, J.M. Menendez, O. Gomis, J. Ruiz-Fuertes, J.A. Sans, D. Errandonea, and J.M. Recio, Inorg. Chem. 51, 5289 (2012).CrossRefGoogle Scholar
  16. 16.
    S.I. Sadovnikov and A.I. Gusev, Biointerface Res. Appl. Chem. 6, 1797 (2016).Google Scholar
  17. 17.
    S.I. Sadovnikov, A.I. Gusev, and A.A. Rempel, Phys. Chem. Chem. Phys. 17, 12466 (2015).CrossRefGoogle Scholar
  18. 18.
    S.I. Sadovnikov, A.I. Gusev, and A.A. Rempel, Superlattices Microstruct. 83, 35 (2015).  https://doi.org/10.1016/j.spmi.2015.03.024.CrossRefGoogle Scholar
  19. 19.
    S.I. Sadovnikov, A.I. Gusev, and A.A. Rempel, Phys. Chem. Chem. Phys. 17, 20495 (2015).  https://doi.org/10.1039/c5cp02499d.CrossRefGoogle Scholar
  20. 20.
    C.D. Wagner, W.M. Riggs, L.E. Davis, and J.F. Moulder, Carbon, in Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data, ed. G.E. Muilenberg (Eden Prairie: Physical Electronics, Inc., 1976), pp. 40–41.Google Scholar
  21. 21.
    C.D. Wagner, W.M. Riggs, L.E. Davis, and J.F. Moulder, Silver, in Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data, ed. G.E. Muilenberg (Eden Prairie: Physical Electronics, Inc., 1976), pp. 120–121. Google Scholar
  22. 22.
    C.D. Wagner, W.M. Riggs, L.E. Davis, and J.F. Moulder, Sulfur, in Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of Xps Data, ed. G.E. Muilenberg (Eden Prairie: Physical Electronics, Inc., 1976), pp. 60–61.Google Scholar
  23. 23.
    R. Zamiri, H. Abbastabar Ahangar, A. Zakaria, G. Zamiri, and M. Shabani, Chem. Cent. J. 9, 28 (2015).CrossRefGoogle Scholar
  24. 24.
    S.P. Anthony, Mater. Lett. 63, 773 (2009).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Departamento de Investigación en FísicaUniversidad de SonoraHermosilloMexico
  2. 2.Centro de Investigación y de Estudios Avanzados, IPNUnidad QuerétaroQuerétaroMexico
  3. 3.Departamento de Investigación en Polímeros y MaterialesUniversidad de SonoraHermosilloMexico
  4. 4.Departamento de FísicaUniversidad de SonoraHermosilloMexico

Personalised recommendations