Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Highly Conductive Graphene Electronics by Inkjet Printing

Abstract

Graphene is currently emerging as an alternative to traditional conductive materials, such as copper and silver because of its excellent electrical conductivity and earth's carbon abundance. Graphene can be applied in many different electronic fields with different manufacturing methods to meet their specific requirements, which promote the development of advanced manufacturing technology in graphene electrical applications. Inkjet printing, as an environmentally friendly, low-cost and simple-to-operate advanced manufacturing method, has broad development prospects especially in the field of flexible electronics. In this review, several factors affecting the electrical conduction property of graphene applications in the inkjet-printed graphene process are listed as follows: the preparation method of ink, material and treatment of substrate, thickness of print, and annealing, especially whether a coffee ring is produced. In addition, this paper also cites some examples of inkjet-printed graphene in electrical conductivity. In order to continuously improve the procedure designs of graphene electronics fabrication, more accurate relationships between electrical conductivity of graphene and these parameters can be built. Based on the excellent prospect of inkjet printing technology in the field of conductive electronics, there will be some further research about the perfect implementation of graphene’s electrical conductivity.

Graphic Abstract

References

  1. 1.

    Z. Fan, T. Wei, G. Luo, and F. Wei, J. Mater. Sci. 40, 18 (2005).

  2. 2.

    A. Denneulin, J. Bras, A. Blayo, B. Khelifi, F.R. Dherbey, and C. Neuman, Nanotechnology 20, 38 (2009).

  3. 3.

    P. Beecher, P. Servati, A. Rozhin, A. Colli, V. Scardaci, S. Pisana, T. Hasan, A.J. Flewitt, J. Robertson, and G.W. Hsieh, J. Appl. Phys. 102, 4 (2007).

  4. 4.

    W. Tong, J. Ruan, Z. Fan, G. Luo, and W. Fei, Carbon 45, 13 (2007).

  5. 5.

    Nat. Nanotechnol. 5, 755 (2010). https://doi.org/10.1038/nnano.2010.224.

  6. 6.

    D.J. Finn, M. Lotya, G. Cunningham, R.J. Smith, D. McCloskey, J.F. Donegan, and J.N. Coleman, J. Mater. Chem. C 2, 5 (2013). https://doi.org/10.1039/C3TC31993H.

  7. 7.

    J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, and M. Östling, Carbon 50, 8 (2012). https://doi.org/10.1016/j.carbon.2012.03.011.

  8. 8.

    J. Li, F. Ye, S. Vaziri, M. Muhammed, M.C. Lemme, and M. Östling, Adv. Mater. 25, 29 (2013). https://doi.org/10.1002/adma.201300361.

  9. 9.

    J. Li, M.C. Lemme, and M. Östling, ChemPhysChem 15, 16 (2014).

  10. 10.

    J. Li, M.M. Naiini, S. Vaziri, M.C. Lemme, and M. Östling, Adv. Funct. Mater. 24, 6524 (2014). https://doi.org/10.1002/adfm.201400984.

  11. 11.

    F. Bonaccorso, A. Bartolotta, J.N. Coleman, and C. Backes, Adv. Mater. 28, 29 (2016).

  12. 12.

    Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, and P. Avouris, Science 327, 5966 (2010). https://doi.org/10.1126/science.1184289.

  13. 13.

    T. Fujita, M.B.A. Jalil, and S.G. Tan, Appl. Phys. Lett. 97, 4 (2010). https://doi.org/10.1063/1.3473725.

  14. 14.

    K.Y. Shin, J.Y. Hong, and J. Jang, Chem. Commun. 47, 30 (2011). https://doi.org/10.1039/c1cc12913a.

  15. 15.

    W. Jiang, D. Niu, H. Liu, C. Wang, T. Zhao, L. Yin, Y. Shi, B. Chen, Y. Ding, and B. Lu, Adv. Funct. Mater. 24, 48 (2014). https://doi.org/10.1002/adfm.201402070.

  16. 16.

    F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T.S. Kulmala, G.W. Hsieh, S. Jung, F. Bonaccorso, P. Paul, D. Chu, and A.C. Ferrari, ACS Nano 6, 4 (2012).

  17. 17.

    T. Low and F. Guinea, Nano Lett. 10, 9 (2010).

  18. 18.

    V.V. Cheianov, V. Fal’ko, and B.L. Altshuler, Science 315, 5816 (2007).

  19. 19.

    A.K. Geim and K.S. Novoselov, Nat. Mater. 6, 11 (2009). https://doi.org/10.1142/9789814287005_0002.

  20. 20.

    X. Sun, H. Sun, H. Li, and H. Peng, Adv. Mater. 25, 37 (2013). https://doi.org/10.1002/adma.201301926.

  21. 21.

    S. Goenka, V. Sant, and S. Sant, J. Control. Release 173, 1 (2014).

  22. 22.

    A.K. Geim, Science 324, 5934 (2009).

  23. 23.

    M.S. Artiles, C.S. Rout, and T.S. Fisher, Adv. Drug Deliv. Rev. 63, 14 (2011).

  24. 24.

    P. Nguyen and V. Berry, J. Phys. Chem. Lett. 3, 8 (2012).

  25. 25.

    M.D. Stoller, S. Park, Y. Zhu, J. An, and R.S. Ruoff, Nano Lett. 8, 10 (2008). https://doi.org/10.1021/nl802558y.

  26. 26.

    K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J. Maan, G.S. Boebinger, P. Kim, and A.K. Geim, Science 315, 5817 (2007).

  27. 27.

    Y. Wang, Y. Huang, Y. Song, X. Zhang, Y. Ma, J. Liang, and Y. Chen, Nano Lett. 9, 1 (2009).

  28. 28.

    X. Zhao, B. Song, W. Fan, Y. Zhang, and Y. Shi, J. Alloys Compd. 665, 271 (2016). https://doi.org/10.1016/j.jallcom.2015.12.126.

  29. 29.

    D. Zhu and M. Wu, J. Electron. Mater. 47, 9 (2018).

  30. 30.

    J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Minqo, R.S. Ruoff, and L. Shi, Science 328, 5975 (2010).

  31. 31.

    S.K. Vashist and J.H.T. Luong, Carbon 84, 519 (2015). https://doi.org/10.1016/j.carbon.2014.12.052.

  32. 32.

    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari, Mater. Today 15, 12 (2012).

  33. 33.

    M. Xu, T. Liang, M. Shi, and H. Chen, Chem. Rev. 113, 5 (2013).

  34. 34.

    M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and Z. Hua, Nat. Chem. 5, 4 (2013).

  35. 35.

    A. Nagashima, Surf. Sci. Lett. 291, 93 (1993).

  36. 36.

    T.A. Land, T. Michely, R.J. Behm, J.C. Hemminger, and G. Comsa, Surf. Sci. 264, 3 (1992).

  37. 37.

    C. Berger, Z.M. Song, T.B. Li, X.B. Li, A.Y. Ogbazghi, R. Feng, Z.T. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, J. Phys. Chem. B 108, 52 (2004).

  38. 38.

    I. Forbeaux, J.M. Themlin, and J.M. Debever, Phys. Rev. B 58, 24 (1998).

  39. 39.

    C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. Marchenkov, E. Conrad, P. First, and W. Heer, Science 312, 5777 (2006).

  40. 40.

    T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, Science 313, 5789 (2006).

  41. 41.

    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 5696 (2004).

  42. 42.

    A. Kamyshny and S. Magdassi, Small 10, 17 (2014).

  43. 43.

    Z. Cui, Printed Electronics Materials Technologies and Applications (Hoboken: Wiley, 2016), p. 450.

  44. 44.

    J. Gilot, M.M. Wienk, and R.A.J. Janssen, Org. Electron. 12, 4 (2011).

  45. 45.

    A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, Sol. Energy Mater. Sol. Cells 95, 2 (2011).

  46. 46.

    J. Ajuria, I. Etxebarria, W. Cambarau, U. Muñecas, R. Tena-Zaera, J.C. Jimeno, and R. Pacios, Energy Environ. Sci. 4, 2 (2011).

  47. 47.

    H. Liu, Y. Liu, and D. Zhu, J. Mater. Chem. 21, 10 (2011). https://doi.org/10.1039/C0JM02922J.

  48. 48.

    A. Kasry, M.A. Kuroda, G.J. Martyna, G.S. Tulevski, and A.A. Bol, ACS Nano 4, 7 (2010).

  49. 49.

    H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 3 (2008).

  50. 50.

    Y.X. Xu, H. Bai, G.W. Lu, C. Li, and G.Q. Shi, J. Am. Chem. Soc. 130, 18 (2008).

  51. 51.

    X.S. Li, Y.W. Zhu, W.W. Cai, M. Borysiak, B.Y. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff, Nano Lett. 9, 12 (2009).

  52. 52.

    C.G. Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 11 (2007).

  53. 53.

    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 16 (2009).

  54. 54.

    E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M. Geier, and M.C. Hersam, J. Phys. Chem. Lett. 4, 8 (2013).

  55. 55.

    L. Huang, Y. Huang, J. Liang, X. Wan, and Y. Chen, Nano Res. 4, 7 (2011). https://doi.org/10.1007/s12274-011-0123-z.

  56. 56.

    Y. Hernandez, M. Lotya, D. Rickard, S.D. Bergin, and J.N. Coleman, Langmuir 26, 5 (2010).

  57. 57.

    N. Behabtu, J.R. Lomeda, M.J. Green, A.L. Higginbotham, A. Sinitskii, D.V. Kosynkin, D. Tsentalovich, A.N.G. Parra-Vasquez, J. Schmidt, and E. Kesselman, Nat. Nanotechnol. 5, 6 (2010).

  58. 58.

    A.A. Green and M.C. Hersam, Nano Lett. 9, 12 (2009).

  59. 59.

    J.W.T. Seo, A.A. Green, A.L. Antaris, and M.C. Hersam, J. Phys. Chem. Lett. 2, 9 (2011). https://doi.org/10.1021/jz2003556.

  60. 60.

    Y.T. Liang and M.C. Hersam, J. Am. Chem. Soc. 132, 50 (2010).

  61. 61.

    C. Jeong, P. Nair, M. Khan, M. Lundstrom, and M.A. Alam, Nano Lett. 11, 11 (2011). https://doi.org/10.1021/nl203041n.

  62. 62.

    I.N. Kholmanov, C.W. Magnuson, A.E. Aliev, H. Li, B. Zhang, J.W. Suk, L.L. Zhang, E. Peng, S.H. Mousavi, and A.B. Khanikaev, Nano Lett. 12, 11 (2012).

  63. 63.

    M.S. Lee, K. Lee, S.Y. Kim, H. Lee, J. Park, K.H. Choi, H.K. Kim, D.G. Kim, D.Y. Lee, S. Nam, and J.U. Park, Nano Lett. 13, 6 (2013). https://doi.org/10.1021/nl401070p.

  64. 64.

    R. Chen, S.R. Das, C. Jeong, M.R. Khan, D.B. Janes, and M.A. Alam, Adv. Funct. Mater. 23, 5150 (2013). https://doi.org/10.1002/adfm.201300124.

  65. 65.

    S.V. Murphy and A. Anthony, Nat. Biotechnol. 32, 8 (2014).

  66. 66.

    B.-J. de Gans, P.C. Duineveld, and U.S. Schubert, Adv. Mater. 16, 3 (2004).

  67. 67.

    K. Rak-Hwan, K. Dae-Hyeong, X. Jianliang, K. Bong Hoon, P. Sang-Il, P. Bruce, G. Roozbeh, Y. Jimin, L. Ming, and L. Zhuangjian, Nat. Mater. 9, 11 (2010).

  68. 68.

    A. Teichler, J. Perelaer, and U.S. Schubert, J. Mater. Chem. C 1, 10 (2013).

  69. 69.

    D. Lupo, W. Clemens, S. Breitung, and K. Hecker, Applications of Organic and Printed Electronics, ed. E. Cantatore (Springer: New York, 2012), p. 1.

  70. 70.

    J.G. Korvink, P.J. Smith, and D.Y. Shin, Inkjet-Based Micromanufacturing (Weinheim: Wiley-VCH, 2012), p. 371. https://doi.org/10.1002/9783527647101.

  71. 71.

    G. Cummins and M.P.Y. Desmulliez, Circuit World 38, 4 (2012).

  72. 72.

    G. Abellan, C. Marti-Gastaldo, A. Ribera, and E. Coronado, Acc. Chem. Res. 48, 6 (2015).

  73. 73.

    S.Z. Butler, S.M. Hollen, C. Linyou, C. Yi, J.A. Gupta, H.R. Gutiérrez, T.F. Heinz, H. Seung Sae, H. Jiaxing, and A.F. Ismach, ACS Nano 7, 4 (2013).

  74. 74.

    B. Derby, Annu. Rev. Mater. Res. 40, 1 (2010).

  75. 75.

    S. Magdassi, The Chemistry of Inkjet Inks (Singapore: World Scientific Publishing Company, 2009), p. 356. https://doi.org/10.1142/6869.

  76. 76.

    P. Calvert, Chem. Mater. (2001). https://doi.org/10.1021/cm0101632.

  77. 77.

    D. Zhu, R. Chu, X. Zhang, E. Cheng, Z. Zhang, Y. Qu, C. Sun, and G. Duan, Chin. J. Mech. Eng. 53, 13 (2017). https://doi.org/10.3901/JME.2017.13.108.

  78. 78.

    S. Dan, S. Vivek, and Colloids, Langmuir 24, 5 (2008).

  79. 79.

    U. Khan, A. O’Neil, M. Lotya, S. De, and J.N. Coleman, Small 6, 7 (2010). https://doi.org/10.1002/smll.200902066.

  80. 80.

    Y. Hernandez, V. Nicolosi, M. Lotya, F.M. Blighe, Z. Sun, S. De, I.T. McGovern, B. Holland, M. Byrne, Y.K. Gun’Ko, J.J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A.C. Ferrari, and J.N. Coleman, Nat. Nanotechnol. 3, 9 (2008). https://doi.org/10.1038/nnano.2008.215.

  81. 81.

    J.N. Coleman, Acc. Chem. Res. 46, 1 (2013).

  82. 82.

    L.T. Le, M.H. Ervin, H. Qiu, B.E. Fuchs, and W.Y. Lee, Electrochem. Commun. 13, 4 (2011).

  83. 83.

    S. Lim, B. Kang, D. Kwak, W.H. Lee, J.A. Lim, and K. Cho, J. Phys. Chem. C 116, 13 (2012).

  84. 84.

    D. Kong, L.T. Le, Y. Li, J.L. Zunino, and W. Lee, Langmuir 28, 37 (2012).

  85. 85.

    P.J. Yunker, M.A. Lohr, T. Still, A. Borodin, D.J. Durian, and A.G. Yodh, Phys. Rev. Lett. 110, 3 (2013).

  86. 86.

    L. Li, Y. Guo, X. Zhang, and Y. Song, J. Mater. Chem. A 2, 44 (2014).

  87. 87.

    Y. Gao, W. Shi, W. Wang, Y. Leng, and Y. Zhao, Ind. Eng. Chem. Res. 53, 43 (2014). https://doi.org/10.1021/ie502675z.

  88. 88.

    K. Arapov, R. Abbel, G. de With, and H. Friedrich, Faraday Discuss. 173, 323 (2014).

  89. 89.

    E.B. Secor and M.C. Hersam, J. Phys. Chem. Lett. 6, 4 (2015).

  90. 90.

    A. Capasso, A.E. Del Rio Castillo, H. Sun, A. Ansaldo, V. Pellegrini, and F. Bonaccorso, Solid State Commun. 224, 53 (2015). https://doi.org/10.1016/j.ssc.2015.08.011.

  91. 91.

    E.B. Secor, B.Y. Ahn, T.Z. Gao, J.A. Lewis, and M.C. Hersam, Adv. Mater. 27, 42 (2015).

  92. 92.

    S. Sacanna, D. Pine, and G.-R. Yi, Soft Matter 9, 34 (2013).

  93. 93.

    V. Tallapally, D. Damma, and S.R. Darmakkolla, Chem. Commun. 55, 11 (2019).

  94. 94.

    S.V. Morozov, K.S. Novoselov, F. Schedin, D. Jiang, A.A. Firsov, and A.K. Geim, Phys. Rev. B 72, 20 (2005).

  95. 95.

    J. Kim and B.M. Weon, Appl. Phys. Lett. 113, 183704 (2018). https://doi.org/10.1063/1.5049606.

  96. 96.

    P. He and B. Derby, Adv. Mater. Interfaces (2017). https://doi.org/10.1002/admi.201700944.

  97. 97.

    M.F. Schatz and G.P. Neitzel, Annu. Rev. Fluid Mech. 33, 1 (2001).

  98. 98.

    V. Tallapally, R.J.A. Esteves, L. Nahar, and I.U. Arachchige, Chem. Mater. 28, 15 (2016).

  99. 99.

    S. Majee, C. Liu, B. Wu, S.-L. Zhang, and Z.-B. Zhang, Carbon 114, 77 (2017). https://doi.org/10.1016/j.carbon.2016.12.003.

  100. 100.

    K.Y. Shin, J.Y. Hong, and J. Jang, Adv. Mater. 23, 18 (2011).

  101. 101.

    S. Patchkovskii, J.S. Tse, S.N. Yurchenko, L. Zhechkov, T. Heine, and G. Seifert, Proc. Natl. Acad. Sci. U.S.A. 102, 30 (2005).

  102. 102.

    A. Geim, K. Novoselov, F. Schedin, S. Morozov, D. Jiang, and E. Hill, Nat. Mater. 6, 9 (2007).

  103. 103.

    V. Dua, S.P. Surwade, S. Ammu, S.R. Agnihotra, S. Jain, K.E. Roberts, S. Park, R.S. Ruoff, and S.K. Manohar, Angew. Chem. Int. Ed. 49, 12 (2010). https://doi.org/10.1002/anie.200905089.

  104. 104.

    K. Müllen and J.P. Rabe, Acc. Chem. Res. 41, 4 (2008).

  105. 105.

    J. Wu, W. Pisula, and K. Müllen, Chem. Rev. 107, 3 (2007).

  106. 106.

    G. Eda and M. Chhowalla, Nano Lett. 9, 2 (2009).

  107. 107.

    P. Avouris, Z. Chen, and V. Perebeinos, Nat. Nanotechnol. 2, 10 (2007).

  108. 108.

    X. Wang, L. Zhi, and K. Müllen, Nano Lett. 8, 1 (2008).

  109. 109.

    J.M. Yun, J.S. Yeo, J. Kim, H.G. Jeong, D.Y. Kim, Y.J. Noh, S.S. Kim, B.C. Ku, and S.I. Na, Adv. Mater. 23, 42 (2011). https://doi.org/10.1002/adma.201102207.

  110. 110.

    X. Wen, J. Wu, D. Gao, and C. Lin, J. Mater. Chem. A 4, 35 (2016). https://doi.org/10.1039/c6ta04616a.

  111. 111.

    B. Joonho, P. Young Jun, L. Minbaek, C. Seung Nam, C. Young Jin, L. Churl Seung, K. Jong Min, and W.Z. Lin, Adv. Mater. 23, 30 (2011).

  112. 112.

    C. Liu, Z. Yu, D. Neff, A. Zhamu, and B.Z. Jang, Nano Lett. 10, 12 (2010). https://doi.org/10.1021/nl102661q.

  113. 113.

    W. Junbo, A. Mukul, H.A. Becerril, B. Zhenan, L. Zunfeng, C. Yongsheng, and P. Peter, ACS Nano 4, 1 (2010).

  114. 114.

    S. Bae, H.K. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I.I. Song, Y.J. Kim, K.S. Kim, B. Özyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010). https://doi.org/10.1038/nnano.2010.132.

  115. 115.

    F. Xia, T. Mueller, Y. Lin, A. Valdes-Garcia, and P. Avouris, Nat. Nanotechnol. 4, 839 (2009). https://doi.org/10.1038/nnano.2009.292.

  116. 116.

    T. Echtermeyer, L. Britnell, P. Jasnos, A. Lombardo, R. Gorbachev, A. Grigorenko, A. Geim, A. Ferrari, and K. Novoselov, Nat. Commun. 2, 1 (2011).

  117. 117.

    G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond, M. Bernechea, G.D.A. Fp, F. Gatti, and F.H. Koppens, Nat. Nanotechnol. 7, 363 (2012). https://doi.org/10.1038/nnano.2012.60.

  118. 118.

    T. Mueller, F. Xia, and P. Avouris, Nat. Photon. 4, 5 (2010).

  119. 119.

    L. Yin, X. Tian, Z. Shang, and D. Li, Mater. Lett. 239, 132 (2018). https://doi.org/10.1016/j.matlet.2018.12.087.

  120. 120.

    T. Hasan, F. Torrisi, Z. Sun, D. Popa, V. Nicolosi, G. Privitera, F. Bonaccorso, and A.C. Ferrari, Phys. Status Solidi 247, 11–12 (2010).

  121. 121.

    Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D.M. Basko, and A.C. Ferrari, ACS Nano 4, 2 (2010). https://doi.org/10.1021/nn901703e.

  122. 122.

    W. Li, F. Li, H. Li, M. Su, M. Gao, Y. Li, D. Su, X. Zhang, and Y. Song, A.C.S. Appl. Mater. Interfaces 8, 19 (2016). https://doi.org/10.1021/acsami.6b04235.

  123. 123.

    S.S. Varghese, S. Lonkar, K.K. Singh, S. Swaminathan, and A. Abdala, Sens. Actuator B Chem. 218, 160 (2015). https://doi.org/10.1016/j.snb.2015.04.062.

  124. 124.

    M.K. Choi, I. Park, D.C. Kim, E. Joh, O.K. Park, J. Kim, M. Kim, C. Choi, J. Yang, K.W. Cho, J.H. Hwang, J.M. Nam, T. Hyeon, J.H. Kim, and D.H. Kim, Adv. Funct. Mater. 25, 46 (2015). https://doi.org/10.1002/adfm.201570293.

  125. 125.

    R. Beams, L. Gustavo Cancado, and L. Novotny, J. Phys.: Condens. Matter 27, 8 (2015).

  126. 126.

    N. Karim, S. Afroj, A. Malandraki, S. Butterworth, C. Beach, M. Rigout, K.S. Novoselov, A.J. Casson, and S.G. Yeates, J. Mater. Chem. C 5, 44 (2017).

  127. 127.

    K.R. Ratinac, W.R. Yang, S.P. Ringer, and F. Braet, Environ. Sci. Technol. 44, 4 (2010).

  128. 128.

    G. Lu, L.E. Ocola, and J. Chen, Nanotechnology 20, 44 (2009). https://doi.org/10.1088/0957-4484/20/44/445502.

  129. 129.

    K. Hu, D.D. Kulkarni, I. Choi, and V.V. Tsukruk, Prog. Polym. Sci. 39, 11 (2014). https://doi.org/10.1016/j.progpolymsci.2014.03.001.

  130. 130.

    T. Premkumar and K.E. Geckeler, Prog. Polym. Sci. 37, 4 (2012).

Download references

Acknowledgments

This work is supported by a grant from Natural Science Foundation of Hebei Province (CN) (Grant No. E2018202200).

Author information

Correspondence to Dongbin Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Wang, Z. & Zhu, D. Highly Conductive Graphene Electronics by Inkjet Printing. Journal of Elec Materi 49, 1765–1776 (2020). https://doi.org/10.1007/s11664-019-07920-1

Download citation

Keywords

  • Graphene
  • inkjet printing
  • conductivity
  • electronics