Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effects of TiO2 Addition on the Radio-Frequency Properties of the Sr2CoNbO6 Matrix

  • 8 Accesses


In this work, the investigation of Sr2CoNbO6–TiO2 composite, which shows interesting dielectric characteristics (low loss and high dielectric permittivity), was carried out. The Sr2CoNbO6(SCNO) system is widely applied in electro-electronic devices due to their dielectric characteristics. SCNO was synthesised via solid state reaction, and x-ray diffraction was used for structural characterisation. Impedance spectroscopy was used to characterise the material in the radiofrequency range where the real impedance of the SCNO showed high values, and the imaginary impedance showed a relaxation time. The thermo active process was studied by the Arrhenius equation in the SCNO–TiO2 composite series, which showed a considerable increase in activation energy. Nyquist diagrams showed the presence of a semicircle that was fitted using a model of the equivalent R-CPE circuit, showing a similar profile in all studied samples.

This is a preview of subscription content, log in to check access.


  1. 1.

    K.M. Luk and K.W. Leung, Dielectric Resonator Antennas (Boston: Research Studies Press, 2003).

  2. 2.

    J.E.V. de Morais, R.G.M. de Oliveira, A.J.N. de Castro, J.C. Sales, M.A.S. Silva, J.C. Goes, M.M. Costa, and A.S.B. Sombra, J. Electron. Mater. 46, 5193 (2017).

  3. 3.

    D. Kajfez and P. Guillon, Dielectric Resonators, 2nd ed. (Lisle: Tucker, 1998).

  4. 4.

    M.T. Sebastian, Dielectric Materials for Wireless Communication (Amsterdam: Elsevier, 2010).

  5. 5.

    J. Bashir and R. Shaheen, Solid State Sci. 13, 993 (2011).

  6. 6.

    T. Motohashi, V. Caignaert, V. Pralong, M. Hervieu, A. Maignan, and B. Raveau, Phys. Rev. B 71, 214424 (2005).

  7. 7.

    K. Yoshii, J. Alloys Compd. 307, 119 (2000).

  8. 8.

    C.I. Wei, L. Ping, and W. Ying, J. Phys. Chem. Solids 57, 1525 (1996).

  9. 9.

    G. Blasse, J. Inorg. Nucl. Chem. 27, 993 (1965).

  10. 10.

    T. Xia, Q. Li, J. Meng, and X. Cao, Mater. Chem. Phys. 111, 335 (2008).

  11. 11.

    G. Wang, C. Wang, S. Huang, C. Lei, X. Sun, T. Li, and L. Liu, J. Am. Ceram. Soc. 96, 2203 (2013).

  12. 12.

    L. Fernandes, R. Aquino, D. Carvalho, A. Capaldo, E. Pecoraro, R. Salomão, and E. Trovatti, 8, 2565 (n.d.).

  13. 13.

    M.A.S. Silva, R.G.M. Oliveira, and A.S.B. Sombra, Ceram. Int. 46, 20446 (2019).

  14. 14.

    C. Pascoal, R. Machado, and V.C. Pandolfelli, Cerâmica 48, 61 (2002).

  15. 15.

    P.M.O. Silva, T.S.M. Fernandes, R.M.G. Oliveira, M.A.S. Silva, and A.S.B. Sombra, Mater. Sci. Eng. B 182, 37 (2014).

  16. 16.

    C.G. Koops, Phys. Rev. 83, 121 (1951).

  17. 17.

    S.K. Barik, P.K. Mahapatra, and R.N.P. Choudhary, Appl. Phys. A 85, 199 (2006).

Download references

Author information

Correspondence to R. G. M. Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Morais, J.E.V., Oliveira, R.G.M., Bessa, V.L. et al. Effects of TiO2 Addition on the Radio-Frequency Properties of the Sr2CoNbO6 Matrix. Journal of Elec Materi 49, 2211–2221 (2020).

Download citation


  • SCNO
  • dielectric properties
  • radiofrequency
  • DRA