Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

EPR and Optical Properties of Green Emitting Mn Activated Sr2ZnSi2O7 Phosphors Prepared by Sol–Gel Method

  • 19 Accesses

Abstract

A series of Mn2+ activated Sr2ZnSi2O7 phosphors with variable Mn2+ ions concentration were prepared via citrate sol–gel method. The systematic analysis of structure and luminescent properties were carried out by recording x-ray diffraction patterns, scanning electron micrographs, excitation and emission spectra along with electron paramagnetic resonance (EPR) spectra. The optimization of Mn2+ ion concentration in the synthesized phosphors was done by analyzing emission spectra. The Mn2+ activated Sr2ZnSi2O7 phosphors exhibit green emission under 263 nm excitation. The EPR spectra exhibit sextet hyperfine lines with resonance at g ≈ 2.0 indicating tetrahedral symmetry and covalent bonding between Mn2+ ions and O2− ligand ions bound to it. All the aforesaid results support the suitability of Mn2+ activated Sr2ZnSi2O7 phosphors as visible green emitters in optoelectronic display devices.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y.D. Jiang, F. Zhang, and C.J. Summers, Appl. Phys. Lett. 74, 1677 (1999).

  2. 2.

    Y. Hu, W. Zhuang, H. Ye, D. Wang, S. Zhang, and X. Huang, J. Alloys Compd. 390, 226 (2005).

  3. 3.

    T. Hase, T. Kano, E. Nakazawa, and H. Yamamoto, Adv. Electron. Electron Phys. 79, 271–373 (1990).

  4. 4.

    W. Zhao, G. Ristic, and J.A. Rowlands, Med. Phys. 31, 2375–2726 (2004).

  5. 5.

    C.H. Kim, I.E. Kwon, C.H. Park, Y.J. Hwang, H.S. Bae, B.Y. Yu, C.H. Pyun, and G.Y. Hong, J. Alloys Compd. 311, 33–39 (2000).

  6. 6.

    L. Bindi and P. Bonazzi, Phys. Chem. Miner. 32, 89–96 (2005).

  7. 7.

    L.H. Merwin, A. Sebald, and F. Seifert, Phys. Chem. Miner. 16, 752–756 (1989).

  8. 8.

    S. Yao, L. Xue, and Y. Yan, J. Electroceram. 26, 112–115 (2011).

  9. 9.

    T. Joseph, S. Uma, J. Philip, and M.T. Sebastian, J. Mater. Sci. Mater. Electron. 22, 1000–1009 (2011).

  10. 10.

    T. Joseph, S. Uma, J. Philip, and M.T. Sebastian, J. Mater. Sci. Mater. Electron. 23, 1243–1254 (2012).

  11. 11.

    Y. Hao and Y.H. Wang, Mater. Res. Bull. 42, 2219–2223 (2007).

  12. 12.

    X. Wang, Z.Y. He, D. Jia, W. Strek, R. Dariusz, D. Hreniak, and W.M. Yen, Microelectron. J. 36, 546–548 (2005).

  13. 13.

    Y. Zhang, P. Ran, L.I. Chengyu, Z. Chunyu, and S.U. Qiang, J. Rare Earths 28, 705–708 (2010).

  14. 14.

    K. Ravindranadh, R.V.S.S.N. Ravikumar, and M.C. Rao, AIP Conf. Proc. 1728, 020079 (2016).

  15. 15.

    Y. Chen, Y. Li, J. Wang, M. Wu, and C. Wang, J. Phys. Chem. C 118, 12494–12499 (2014).

  16. 16.

    V. Singh, R.P.S. Chakradhar, J.L. Rao, and D.K. Kim, J. Lumin. 128, 1474–1478 (2008).

  17. 17.

    B. Tripathi, F. Singh, D.K. Avasthi, D. Das, and Y.K. Vijay, Physica B 400, 70–76 (2007).

  18. 18.

    K. Li, H. Wang, X. Liu, W. Wang, and Z. Fu, J. Eur. Ceram. Soc. 37, 4229–4233 (2017).

  19. 19.

    V. Singh, R.P.S. Chakradhar, J.L. Rao, and D.K. Kim, Mater. Chem. Phys. 110, 43–51 (2008).

  20. 20.

    X. Li, X. Tang, Z. Wang, Z. Zou, J. Zhang, Z. Ci, and Y. Wang, J. Alloys Compd. 721, 512–519 (2017).

  21. 21.

    V. Singh, G. Sivaramaiah, J.L. Rao, and S.H. Kim, J. Lumin. 157, 74–81 (2015).

  22. 22.

    N. Singh, V. Singh, G. Sivaramaiah, J.L. Rao, P.K. Singh, M.S. Pathak, S.J. Dhoble, and M. Mohapatra, J. Lumin. 178, 479–486 (2016).

  23. 23.

    M. Ardit, G. Cruciani, and M. Dondi, Z. Kristallogr. 225, 298 (2010).

  24. 24.

    H. Yan, J. Wuhan Univ. Technol. Mater. Sci. Ed. 30, 97–99 (2015).

  25. 25.

    Z. Zhang, C. Ma, R. Gautier, M.S. Molokeev, Q. Liu, and Z. Xia, Adv. Funct. Mater. 28, 1804150 (2018).

  26. 26.

    H.B. Premkumar, D.V. Sunitha, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, J.L. Rao, and R.P.S. Chakradhar, J. Lumin. 132, 2409–2415 (2012).

  27. 27.

    S.V. Nistor, L.C. Nistor, M. Stefan, C.D. Mateescu, R. Birjega, N. Solovieva, and M. Nikl, Superlattices Microstruct. 46, 306–311 (2009).

  28. 28.

    V. Singh, R.P.S. Chakradhar, J.L. Rao, and D.-K. Kim, J. Lumin. 129, 755–759 (2009).

  29. 29.

    Y. Wei, X. Han, E. Song, and Q. Zhang, Mater. Res. Bull. 113, 90–96 (2019).

  30. 30.

    M.R. Yadav, P.R. Krishna, B.T. Rao, B.R.V. Rao, and G.V. Lakshmikanth, Mater. Today Proc. 5, 25807–25814 (2018).

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1D1A1B03030003).

Author information

Correspondence to Vijay Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Deopa, N., Kaur, S. et al. EPR and Optical Properties of Green Emitting Mn Activated Sr2ZnSi2O7 Phosphors Prepared by Sol–Gel Method. Journal of Elec Materi 49, 2265–2272 (2020). https://doi.org/10.1007/s11664-019-07914-z

Download citation

Keywords

  • Sol–gel
  • EPR
  • Mn2+ ions
  • Sr2ZnSi2O7
  • photoluminescence