Advertisement

Journal of Electronic Materials

, Volume 49, Issue 3, pp 2302–2309 | Cite as

Enhanced Anharmonic Oscillations in Cu0.5Tl0.5Ba2(Ca2−yMgy)Cu3−xCdxO10−δ (y = 0, 1; x = 0, 1.5) Superconductors

  • Asad Raza
  • Nawazish A. Khan
  • Najmul HassanEmail author
Article
  • 2 Downloads

Abstract

Cu0.5Tl0.5Ba2Ca2Cu3O10−δ (undoped), Cu0.5Tl0.5Ba2(CaMg)Cu3O10−δ (Mg-doped), Cu0.5Tl0.5Ba2Ca2Cu1.5Cd1.5O10−δ (Cd-doped), and Cu0.5Tl0.5Ba2(CaMg)Cu1.5Cd1.5O10−δ (Cd/Mg-codoped) samples were synthesized by two-step solid-state reaction at 860°C to investigate the possible role of anharmonic oscillations of atoms in the mechanism of high critical temperature (Tc) superconductivity. The samples showed orthorhombic crystal structure with smaller and larger unit cell volume for the Mg- and Cd/Mg-codoped samples, respectively, compared with the undoped sample. Tc observed by resistivity measurements decreased in the Cd-doped samples, but the maximum suppression was observed in the Cd/Mg-codoped sample showing semiconductor behavior. Fourier-transform infrared (FTIR) absorption spectroscopy revealed hardening of apical oxygen modes on the incorporation of Mg atoms as compared with the undoped sample and similarly with the doping of Mg atoms in the Cd-doped sample, confirming the intrinsic inclusion of these elements in the final compound. Excess conductivity analysis revealed suppression in the coherence length (ξc(0)), interlayer coupling (J), phase relaxation time (τφ) of carriers, Fermi velocity (VF) of carriers, Ginzburg–Landau (GL) parameter κ, breaking energy (Ebreak), and magnetic field penetration depth (λp.d) in Cd-doped samples. The values of Bc0(T), Bc1(T), and Jc(0) increased in the Cd-doped samples, showing enhancement of flux-pinning characteristics. It is proposed that Cd doping at CuO2-planar site induces anharmonic oscillation in the solid-state medium, which suppresses the density of phonons and thereby the density of Cooper pairs and hence superconductivity. These studies emphasize the essential role of electron–phonon interactions in the mechanism of high-Tc superconductivity.

Keywords

CuTl-based superconductors flux pinning anharmonic oscillations electron–phonon interactions excess conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, and F. Lichtenberg, Nature 372, 532 (1994).CrossRefGoogle Scholar
  2. 2.
    R.J. Cava, H. Takagi, H.W. Zandbergen, J.J. Krajewski Jr, W.F. Peck, T. Siegrist, B. Batlogg, R.B. Van Dover, R.J. Felder, K. Mizuhashi, J.O. Lee, H. Eisaki, and S. Uchida, Nature 367, 252 (1994).CrossRefGoogle Scholar
  3. 3.
    A.F. Hebard, M.J. Rosseinsky, R.C. Haddon, D.W. Murphy, S.H. Glarum, T.T. Palstra, A.P. Ramirez, and A.R. Kortan, Nature 350, 600 (1991).CrossRefGoogle Scholar
  4. 4.
    J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, Nature 410, 63 (2001).CrossRefGoogle Scholar
  5. 5.
    Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, and H.J. Hosono, Am. Chem. Soc. 128, 10012 (2006).CrossRefGoogle Scholar
  6. 6.
    Y. Kamihara, T. Watanabe, M. Hirano, and H.J. Hosono, Am. Chem. Soc. 130, 3296 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. Wang, H. Sato, Y. Toda, S. Ueda, H. Hiramatsu, and H. Hosono, Chem. Mater. Soc. 226, 8503 (2014).Google Scholar
  8. 8.
    K.A. Jasim and T.J. Alwan, J. Supercond. Nov. Magn. 30, 3451 (2017).CrossRefGoogle Scholar
  9. 9.
    V. Tallapally, D. Damma, and S.R. Darmakkolla, Chem. Commun. 55, 1560 (2019).CrossRefGoogle Scholar
  10. 10.
    Y. Wang, H. Sato, Y. Toda, S. Ueda, H. Hiramatsu, and H. Hosono, Chem. Mater. 26, 7209 (2014).CrossRefGoogle Scholar
  11. 11.
    D.J.C. Walker, A.P. Mackenzie, and J.R. Cooper, Phys. Rev. B 51, 15653 (1995).CrossRefGoogle Scholar
  12. 12.
    X. Zhang, K.W. Yip, and C.K. Ong, Phys. Rev. B 51, 1277 (1995).CrossRefGoogle Scholar
  13. 13.
    I.G. Kaplan, J. Soullard, and H. Cobos, J. Phys. Rev. B 65, 214509 (2002).CrossRefGoogle Scholar
  14. 14.
    Y. Fukuzumi, K. Mizuhashi, and S. Ushida, Phys. Rev. B 61, 627 (2000).CrossRefGoogle Scholar
  15. 15.
    V.N. Vieira, P. Pureur, and J. Schaf, Phys. Rev. B 66, 224506 (2002).CrossRefGoogle Scholar
  16. 16.
    Y. Maeno, T. Tomita, M. Kyogoki, S. Awaji, Y. Aoki, K. Hoshino, A. Minami, and T. Fujita, Nature 328, 512 (1987).CrossRefGoogle Scholar
  17. 17.
    H. Alloul, P. Mendels, H. Casalta, J.F. Marucco, and J. Arabski, Phys. Rev. Lett. 67, 3140 (1991).CrossRefGoogle Scholar
  18. 18.
    S.H. Pan, E.W. Hudson, K.M. Lang, H. Eisaki, S. Uchida, and J.C. Davis, Nature 403, 746 (2000).CrossRefGoogle Scholar
  19. 19.
    M. Akoshima, T. Noji, Y. Ono, and Y. Koike, Phys. Rev. B 57, 7491 (1998).CrossRefGoogle Scholar
  20. 20.
    Y. Hanaki, Y. Ando, and S. Ono, Phys. Rev. B 64, 172514 (2001).CrossRefGoogle Scholar
  21. 21.
    Y.K. Kuo, C.W. Schneider, M.J. Skove, M.V. Nevitt, G.X. Tessema, and J.J. McGee, Phys. Rev. B 56, 6201 (1997).CrossRefGoogle Scholar
  22. 22.
    N. Kakinuma, Y. Ono, and Y. Koike, Phys. Rev. B 59, 1491 (1999).CrossRefGoogle Scholar
  23. 23.
    B. Nachumi, A. Keren, K. Kojima, M. Larkin, G.M. Luke, J. Merrin, O. Tchernyshöv, Y.J. Uemura, N. Ichikawa, M. Goto, and S. Uchida, Phys. Rev. Lett. 77, 5421 (1996).CrossRefGoogle Scholar
  24. 24.
    J.L. Tallon, C. Berhard, G.V.M. Williams, and J.W. Loram, Phys. Rev. Lett. 79, 5294 (1997).CrossRefGoogle Scholar
  25. 25.
    A.A. Khurram and N.A. Khan, Supercond. Sci. Technol. 19, 679 (2006).CrossRefGoogle Scholar
  26. 26.
    S.K. Agarwal, A. Iyo, K. Tokiwa, Y. Tanaka, K. Tanaka, M. Tokumoto, N. Terada, T. Saya, M. Umeda, and H. Ihara, Phys. Rev. B 58, 9504 (1998).CrossRefGoogle Scholar
  27. 27.
    N.A. Khan and A.A. Khurram, Appl. Phys. Lett. 86, 152502 (2005).CrossRefGoogle Scholar
  28. 28.
    N.A. Khan, A. Javed, and A.A. Khurram, Phys. C 425, 90 (2005).CrossRefGoogle Scholar
  29. 29.
    N.A. Khan, and S. Nawaz, IEEE Trans. Appl. Supercond. 16, 2 (2006).CrossRefGoogle Scholar
  30. 30.
    N.A. Khan, G. Hasnain, and K. Sabeeh, J. Phys. Chem. Solids 67, 1841 (2006).CrossRefGoogle Scholar
  31. 31.
    N.A. Khan and G. Husnain, Phys. C 436, 51 (2006).CrossRefGoogle Scholar
  32. 32.
    M. Mumtaz and N.A. Khan, J. Appl. Phys. 103, 083913 (2008).CrossRefGoogle Scholar
  33. 33.
    N.A. Khan and M. Rahim, J. Alloys Compd. 481, 81 (2009).CrossRefGoogle Scholar
  34. 34.
    N.A. Khan, M. Mumtaz, and A.A. Khurrum, J. Appl. Phys. 104, 033916 (2008).CrossRefGoogle Scholar
  35. 35.
    A. Raza, S.H. Safeer, and N.A. Khan, J. Supercond. Nov. Magn. 30, 1153 (2017).CrossRefGoogle Scholar
  36. 36.
    N.A. Khan and A. Raza, J. Supercond. Nov. Magn. 23, 199 (2010).CrossRefGoogle Scholar
  37. 37.
    M. Rahim and N.A. Khan, J. Alloys Compd. 572, 74 (2013).CrossRefGoogle Scholar
  38. 38.
    J.M. Tarascon, P. Barboux, P.F. Miceli, L.H. Greene, G.W. Hull, M. Eibschutz, and S.A. Sunshine, Phys. Rev. B 37, 7458 (1988).CrossRefGoogle Scholar
  39. 39.
    I. Felner, I. Nowik, E.R. Bauminger, D. Hechel, and U. Yaron, Phys. Rev. Lett. 65, 1945 (1990).CrossRefGoogle Scholar
  40. 40.
    A.K. Bandyopadhyay, D. Varandani, E. Gmelin, and A.V. Narlikar, Phys. Rev. B 50, 462 (1994).CrossRefGoogle Scholar
  41. 41.
    A. Gupta, R. Lal, A. Sedky, A.V. Narlikar, and V.P.S. Awana, Phys. Rev. B 61, 11752 (2000).CrossRefGoogle Scholar
  42. 42.
    X. Zhao, S. Nakao, K. Ueno, G. Kinoda, T. Endo, T. Hanaguri, K. Kitazawa, and T. Hasegawa, Phys. B 284, 1065 (2000).CrossRefGoogle Scholar
  43. 43.
    U. Tipparach, T.P. Chen, J.L. Wanger, K. Wu, Q.Y. Chen, Q. Li, J.T. Wang, H.C. Yang, and H.E. Horng, Phys. C 364, 404 (2001).CrossRefGoogle Scholar
  44. 44.
    A. Poddar, B. Bandyopadhyay, and B. Chattopadhyay, Phys. C 390, 126 (2003).Google Scholar
  45. 45.
    S. Isber, R. Awad, A.I. Abou-Aly, M. Tabbal, and J.M. Kaouar, Supercond. Sci. Technol. 18, 311 (2005).CrossRefGoogle Scholar
  46. 46.
    J.G. Bednorz and K.A.Z. Müller, Phys. B 64, 189 (1986).Google Scholar
  47. 47.
    T. Sato, H. Nakane, N. Mori, and S. Yoshizawa, Phys. C 244, 344 (2003).Google Scholar
  48. 48.
    A. Das and R. Suryanarayanan, J. Phys. 15, 623 (1995).Google Scholar
  49. 49.
    A.K. Ghosh, S.K. Bandyopadhyay, P. Barat, P. Sen, and A.N. Basu, Phys. C 264, 255 (1996).CrossRefGoogle Scholar
  50. 50.
    W.E. Lawrence, and S. Doniach, in Proceedings of the Twelfth International Conference on Low Temperature Physics, ed. E. Kanda (Keigaku, Tokyo, 1971), p. 361.Google Scholar
  51. 51.
    A. Sedky, J. Low Temp. Phys. 148, 53 (2007).CrossRefGoogle Scholar
  52. 52.
    A. Raza, M. Rahim, and N.A. Khan, Ceram. Int. 39, 4349 (2013).CrossRefGoogle Scholar
  53. 53.
    A.I. Abu Aly, I.H. Ibrahim, R.A. Awad, and A. El-Harizy, J. Supercond. Nov. Magn. 23, 1325 (2010).CrossRefGoogle Scholar
  54. 54.
    A.L. Solovjov, V.M. Dmitriev, H.U. Habermeier, and I.E. Trofimov, Phys. Rev. B 55, 8551 (1997).CrossRefGoogle Scholar
  55. 55.
    S.K. Nath, K.H. Maria, S. Noor, S.S. Sikder, S.M. Hoque, and M.A. Hakim, J. Magn. Magn. Mater. 324, 2116 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2020

Authors and Affiliations

  1. 1.Materials Science Laboratory, Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.Department of PhysicsHazara UniversityMansehraPakistan

Personalised recommendations