Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Optical Properties of the Oxygen Vacancy in KNbO3 Crystal

  • 28 Accesses

Abstract

The defect formation energy of an oxygen vacancy with different charge states (0, +1, +2) has been studied. The finite-size correction scheme (FNV) for the alignment of the defect formation energy is available. The corresponding correction energies are in the range of 0.32–1.29 eV. On the basis of the corrected defect formation energy, fairly accurate optical spectrum line shapes of F and F+ centers are obtained, taking account of electron–phonon coupling. The calculated absorption and luminescence peaks are located at 2.73 eV and 2.62 eV for the F center, and 2.44 eV and 2.25 eV for the F+ center, respectively, which agree well with experimental results. Finally, the result proves that the F+ center is the key point involved in the body color change of the KNbO3 crystal.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T.X. Zhao, J.H. Qiu, Z.H. Chen, X.Q. Wang, N.Y. Yuan, and J.N. Ding, Solid State Commun. 279, 6 (2018).

  2. 2.

    D. Manjiao, Y. Mao, L. Tao, H. Haitao, Y. Wenxiang, J. Heng, L. Peng, Z. Xierong, and K. Shanming, J. Alloys Compd. 698, 357 (2017).

  3. 3.

    R. Ganeshkumar, C.W. Cheah, R. Xu, S.-G. Kim, and R. Zhao, Appl. Phys. Lett. 111, 013905 (2017).

  4. 4.

    Z. Li, M. Wang, S. Wang, B. Yuan, D. Xu, and J. Yao, Optoelectron. Lett. 5, 0339 (2017).

  5. 5.

    L. La Spada and L. Vegni, Opt. Express 25, 23699 (2017).

  6. 6.

    S. Raja, R.R. Babu, K. Ramamurthi, and K. Sethuraman, Mater. Chem. Phys. 213, 130 (2018).

  7. 7.

    R.S. Chaliha, K. Annapurna, A. Tarafder, V.S. Tiwari, P.K. Gupta, and B. Karmakar, Opt. Mater. 32, 1202 (2010).

  8. 8.

    S.A. Basun and D.R. Evans, Phys. Rev. B 93, 094102 (2016).

  9. 9.

    M. Adachi, N. Fujita, Y. Norimatsu, and T. Karaki, Ferroelectrics 334, 91 (2006).

  10. 10.

    R. Ganeshkumar, K.V. Sopiha, P. Wu, C.W. Cheah, and R. Zhao, Nanotechnology 27, 395607 (2016).

  11. 11.

    L. La Spada, C. Spooner, S. Haq, and Y. Hao, Sci. Rep. 9, 3107 (2019).

  12. 12.

    L. La Spada, Sensors 19, 355 (2019).

  13. 13.

    L. La Spada and L. Vegni, Materials 11, 603 (2018).

  14. 14.

    F.G. Wang and A.M. Rappe, Phys. Rev. B 91, 165124 (2015).

  15. 15.

    P. Wu, G. Wang, R. Chen, Y. Guo, X. Ma, and D. Jiang, RSC Adv. 6, 82409 (2016).

  16. 16.

    H.B. Zhang, C.S. Wei, Y.Y. Huang, G.S. Li, Q. Wu, J. Wang, and Y.T. Song, J. Hazard. Mater. 317, 667 (2016).

  17. 17.

    J. Chen, W.J. Pei, G. Chen, Q.F. Zhang, Y.M. Lu, H.T. Huang, M.K. Li, and Y.B. He, J. Am. Ceram. Soc. 101, 4892 (2018).

  18. 18.

    L. La Spada, S. Haq, and Y. Hao, Radio Sci. 52, 1049 (2017).

  19. 19.

    T.M. Mcmanus, L. La Spada, and Y. Hao, J. Opt. 18, 044005 (2016).

  20. 20.

    L. La Spada and L. Vegni, Opt. Exp. 24, 5763 (2016).

  21. 21.

    R.S. Chaliha, K. Annapurna, A. Tarafder, V.S. Tiwari, P.K. Gupta, and B. Karmakar, Spectrochim. Acta A Mol. Biomol. Spectrosc. 75, 243 (2010).

  22. 22.

    J.A. Barr and S.P. Beckman, Mater. Sci. Eng. B 196, 40 (2015).

  23. 23.

    R. Karthikeyan and M.K. Niranjan, J. Magn. Magn. Mater. 469, 138 (2019).

  24. 24.

    K. Szot, F.U. Hillebrecht, D.D. Sarma, M. Campagna, and H. Arend, Appl. Phys. Lett. 48, 490 (1986).

  25. 25.

    T.H. Lee, H.G. Hwang, S. Jang, G. Wang, S. Han, D.H. Kim, C.Y. Kang, and S. Nahm, ACS Appl. Mater. Interfaces 9, 43220 (2017).

  26. 26.

    D. Dimos, H.N. Al-Shareef, W.L. Warren, and B.A. Tuttle, J. Appl. Phys. 80, 1682 (1996).

  27. 27.

    Q. Yong, K.B. Ucer, R.T. Williams, L. Grigorjeva, D. Millers, and V. Pankratov, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 191, 98 (2002).

  28. 28.

    L. Grigorjeva, D. Millers, E.A. Kotomin, and E.S. Polzik, Solid State Commun. 104, 327 (1997).

  29. 29.

    S. Yang, Y. Hu, S. Wang, and H. Gu, Adv. Condens. Matter Phys. 567420 (2013).

  30. 30.

    E.R. Hodgson, C. Zaldo, and F. Agulló-López, Solid State Commun. 75, 351 (1990).

  31. 31.

    O.F. Schirmer and D. von der Linde, Appl. Phys. Lett. 33, 35 (1978).

  32. 32.

    E. Possenriede, B. Hellermann, and O.F. Schirmer, Solid State Commun. 65, 31 (1988).

  33. 33.

    R.I. Eglitis, N.E. Christensen, E.A. Kotomin, A.V. Postnikov, and G. Borstel, Phys. Rev. B 56, 8599 (1997).

  34. 34.

    L. Grigorjeva, D.K. Millers, V. Pankratov, R.T. Williams, R.I. Eglitis, E.A. Kotomin, and G. Borstel, Solid State Commun. 129, 691 (2004).

  35. 35.

    E.A. Kotomin, R.I. Eglitis, and A.I. Popov, J. Phys. Condens. Matter 9, L315 (1999).

  36. 36.

    L. Bingcheng, W. Xiaohui, T. Enke, L. Guowu, and L. Longtu, Appl. Surf. Sci. 351, 558 (2015).

  37. 37.

    X.Y. Wu and W. Xiong, Adv. Mater. Res. 709, 80 (2013).

  38. 38.

    W. Chen and A. Pasquarello, J. Phys. Condens. Matter 27, 133202 (2015).

  39. 39.

    W.A. Hewat, J. Phys. C (Solid State Phys.) 6, 2559 (1973).

  40. 40.

    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

  41. 41.

    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

  42. 42.

    J. Heyd, G.E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003).

  43. 43.

    R. Currat, R. Comes, B. Dorner, and E. Wiesendanger, J. Phys. C (Solid State Phys.) 8, 581 (1974).

  44. 44.

    A. Alkauskas, P. Broqvist, and A. Pasquarello, Phys. Rev. Lett. 101, 046405 (2008).

  45. 45.

    E. Wiesendanger, Ferroelectrics 6, 263 (1974).

  46. 46.

    S.B. Zhang and J.E. Northrup, Phys. Rev. Lett. 67, 2339 (1991).

  47. 47.

    S. Lany and A. Zunger, Phys. Rev. B 78, 235104 (2008).

  48. 48.

    C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Rev. Lett. 102, 016402 (2009).

  49. 49.

    C. Freysoldt, J. Neugebauer, and C.G. Van de Walle, Phys. Status Solidi B 248, 1067 (2011).

  50. 50.

    G. Singh, V.S. Tiwari, and P.K. Gupta, J. Appl. Phys. 107, 064103 (2010).

  51. 51.

    I.V. Kityk, M. Makowska-Janusik, and A. Majchrowski, Cryst. Res. Technol. 221, 815 (2000).

  52. 52.

    K. Huang and A. Rhys, Proc. R. Soc. A 204, 406 (1950).

  53. 53.

    A.M. Stoneham, Theory of Defects in Solids (New York: Oxford University, 1975).

  54. 54.

    A. Alkauskas, M.D. McCluskey, and C.G. Van de Walle, J. Appl. Phys. 119, 181101 (2016).

  55. 55.

    A. Alkauskas, J.L. Lyons, D. Steiauf, and C.G. Van de Walle, Phys. Rev. Lett. 109, 267401 (2012).

  56. 56.

    G. Blasse and L.G.J. De Haart, Mater. Chem. Phys. 14, 48l (1986).

  57. 57.

    S. Raja, R.R. Babu, K. Ramamurthi, and S.M. Babu, Ceram. Int. 44, 3297 (2018).

  58. 58.

    L. Grigorjeva, D. Millers, A.I. Popov, E.A. Kotomin, and E.S. Polzik, J. Lumin. 72, 672 (1997).

  59. 59.

    C. Fischer, M. Wohlecke, T. Volk, and N. Rubinina, Phys. Status Solidi A 137, 247 (1993).

  60. 60.

    R. Patrick, S. Andre, K. Emmanouil, J. Anderson, R. Claudia, B. Friedhelm, S. Mattias, V. de Walle, and G. Chris, Phys. Rev. Lett. 108, 126404 (2012).

  61. 61.

    W. Wang, Q. Zou, and Z. Geng, J. Cryst. Growth 83, 62 (1987).

  62. 62.

    Y.Q. Xu, S.Y. Wu, L.J. Zhang, L.N. Wu, and C.C. Ding, Physica Status Solidi 254, 1600620 (2016).

Download references

Author information

Correspondence to Tingyu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiao, X., Liu, T., Lu, Y. et al. Optical Properties of the Oxygen Vacancy in KNbO3 Crystal. Journal of Elec Materi 49, 2137–2143 (2020). https://doi.org/10.1007/s11664-019-07900-5

Download citation

Keywords

  • Density functional theory
  • oxygen vacancy
  • FNV scheme
  • optical properties