Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Topological Insulator \(\hbox {Bi}_{2}\hbox {Se}_{3}\) Films on Silicon Substrates

  • 31 Accesses


We have employed atomic layer deposition to produce uniform films of \(\hbox {Bi}_{2}\hbox {Se}_{3}\), which is a 3D topological insulator (TI), over 5 cm \(\times \) 5  cm \(\hbox {SiO}_{2}\)-coated Si substrates. The crystalline properties of the films were characterized via Raman spectroscopy, x-ray diffraction, cross-sectional transmission microscopy, and atomic force microscopy, which confirmed the high quality of the films. The TI properties were examined using Hall bridge structures and recording magnetoresistance at 1.9 K. A weak anti-localization effect was observed at low field, from which a phase coherent length of 242 nm and prefactor \(\alpha \) value of 1 were determined, indicating desirable topological properties. This approach for film growth provides a path for integrating a 3D topological insulator with silicon integrated circuit technology.

This is a preview of subscription content, log in to check access.


  1. 1.

    J. Moore, Nat. Phys.5, 378 (2009). https://doi.org/10.1073/pnas.1218104110

  2. 2.

    L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett.98, 106803 (2007). https://doi.org/10.1103/PhysRevLett.98.106803

  3. 3.

    H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang, Nat. Phys.5, 438 (2009). https://doi.org/10.1038/nphys1270

  4. 4.

    C.L. Kane, E.J. Mele, Phys. Rev. Lett.95, 146802 (2005). https://doi.org/10.1103/PhysRevLett.95.146802

  5. 5.

    X.L. Qi, S.C. Zhang, Phys. Today63, 33 (2010). https://doi.org/10.1063/1.3293411

  6. 6.

    D. Kong, Y.L. Cui, Nat. Chem.3(11), 845 (2011). https://doi.org/10.1038/nchem.1171

  7. 7.

    Y. Sun, H. Cheng, S. Gao, Q. Liu, Z. Sun, C. Xiao, C. Wu, S. Wei, Y. Xie, J. Am. Chem. Soc.134(50), 20294 (2012). https://doi.org/10.1021/ja3102049

  8. 8.

    J.G. Checkelsky, Y.S. Hor, R.J. Cava, N.P. Ong, Phys. Rev. Lett.106, 196801 (2011). https://doi.org/10.1103/PhysRevLett.106.196801

  9. 9.

    Y. Liu, M. Weinert, L. Li,Phys. Rev. Lett.108, 115501 (2012). https://doi.org/10.1103/PhysRevLett.108.115501

  10. 10.

    X. Chen, X.C. Ma, K. He, J.F. Jia, Q.K. Xue, Adv. Mater.23(9), 1162 (2011). https://doi.org/10.1002/adma.201003855

  11. 11.

    A.A. Taskin, S. Sasaki, K. Segawa, Y. Ando, Adv. Mater.24(41), 5581 (2012). https://doi.org/10.1002/adma.201201827

  12. 12.

    Z. Chen, T.A. Garcia, J. De Jesus, L. Zhao, H. Deng, J. Secor, M. Begliarbekov, L. Krusin-Elbaum, M.C. Tamargo, J. Electron. Mater.43(4), 909 (2014). https://doi.org/10.1007/s11664-013-2890-7

  13. 13.

    Z. Sun, B. Man, C. Yang, M. Liu, S. Jiang, C. Zhang, J. Zhang, F. Liu, Y. Xu, Appl. Surf. Sci.365, 357 (2016). https://doi.org/10.1016/j.apsusc.2015.12.212

  14. 14.

    L.D. Alegria, M.D. Schroer, A. Chatterjee, G.R. Poirier, M. Pretko, S.K. Patel, J.R. Petta, Nano Lett.12(9), 4711 (2012). https://doi.org/10.1021/nl302108r

  15. 15.

    H. Cao, R. Venkatasubramanian, C. Liu, J. Pierce, H. Yang, M Zahid  Hasan, Y . Wu, Y.P. Chen, Appl. Phys. Lett.101(16), 162104 (2012). https://doi.org/10.1063/1.4760226

  16. 16.

    A. Richardella, A. Kandala, J.S. Lee, N. Samarth, APL Mater.3(8), 083303 (2015). https://doi.org/10.1063/1.4926455

  17. 17.

    R. Browning, N. Kuperman, B. Moon, R. Solanki, Electronics6(2), 27 (2017). https://doi.org/10.3390/electronics6020027

  18. 18.

    R. Browning, N. Kuperman, R. Solanki, V. Kanzyuba, S. Rouvimov, Semicond. Sci. Technol.31(9), 095002 (2016). https://doi.org/10.1088/0268-1242/31/9/095002. https://doi.org/10.1088%2F2053-1591%2F2%2F3%2F035006

  19. 19.

    R. Browning, P. Plachinda, P. Padigi, R. Solanki, S. Rouvimov, Nanoscale8, 2143 (2016). https://doi.org/10.1039/C5NR08006A

  20. 20.

    K. Saiki, K. Ueno, T. Shimada, A. Koma, J. Crystal Growth95(1), 603 (1989). https://doi.org/10.1016/0022-0248(89)90475-2

  21. 21.

    W. Richter, C.R. Becker, Physica Status Solidi(b)84(2), 619 (1977). https://doi.org/10.1002/pssb.2220840226

  22. 22.

    J. Zhang, Z. Peng, A. Soni, Y. Zhao, Y. Xiong, B. Peng, J. Wang, M.S. Dresselhaus, Q. Xiong, Nano Lett.11(6), 2407 (2011). https://doi.org/10.1021/nl200773n

  23. 23.

    W. Dang, H. Peng, H. Li, P. Wang, Z. Liu, Nano Lett.10(8), 2870 (2010). https://doi.org/10.1021/nl100938e

  24. 24.

    T. Suntola, Mater. Sci. Rep.4(5), 261 (1989). https://doi.org/10.1016/S0920-2307(89)80006-4

  25. 25.

    D. Kepaptsoglou, D. Gilks, L. Lari, Q. Ramasse, P. Galindo, M. Weinert, L. Li, G. Nicotra, V. Lazarov, Microsc. Microanal.21(S3), 1151–1152 (2015). https://doi.org/10.1017/S1431927615006546

  26. 26.

    S. Hikami, A.I. Larkin, Y. Nagaoka, Prog. Theoret. Phys.63, 707 (1980). https://doi.org/10.1143/PTP.63.707

  27. 27.

    R. Sultana, G. Gurjar, P. Neha, S. Patnaik, V. Awana,J. Supercond. Novel Magn.31, 1 (2018). https://doi.org/10.1007/s10948-018-4762-0

  28. 28.

    Y.C. Lin, Y.S. Chen, C.C. Lee, J.K. Wu, H.Y. Lee, C.T. Liang, Y.H. Chang, AIP Adv.6(6), 065218 (2016). https://doi.org/10.1063/1.4954735

  29. 29.

    H.Z. Lu, S.Q. Shen, Phys. Rev. B84, 125138 (2011). https://doi.org/10.1103/PhysRevB.84.125138

  30. 30.

    R. Akiyama, K. Fujisawa, T. Yamaguchi, R. Ishikawa, S. Kuroda, Nano Res.9(2), 490 (2016). https://doi.org/10.1007/s12274-015-0930-8

  31. 31.

    B. Hamdou, J. Gooth, A. Dorn, E. Pippel, K. Nielsch, Appl. Phys. Lett.103(19), 193107 (2013). https://doi.org/10.1063/1.4829748

  32. 32.

    J.J. Cha, D. Kong, S.S. Hong, J.G. Analytis, K. Lai, Y. Cui, Nano Lett.12(2), 1107 (2012). https://doi.org/10.1021/nl300018j

  33. 33.

    H.T. He, G. Wang, T. Zhang, I.K. Sou, G.K.L. Wong, J.N. Wang, H.Z. Lu, S.Q. Shen, F.C. Zhang, Phys. Rev. Lett.106, 166805 (2011). https://doi.org/10.1103/PhysRevLett.106.166805

Download references

Author information

Correspondence to Paul Plachinda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Plachinda, P., Hopkins, M., Rouvimov, S. et al. Topological Insulator \(\hbox {Bi}_{2}\hbox {Se}_{3}\) Films on Silicon Substrates. Journal of Elec Materi 49, 2191–2196 (2020). https://doi.org/10.1007/s11664-019-07899-9

Download citation


  • Bismuth selenide
  • ALD growth
  • topological insulator
  • weak anti-localization