Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Design of Highly Efficient CZTS/CZTSe Tandem Solar Cells

  • 35 Accesses


A CZTS/CZTSe tandem solar cell with copper zinc tin sulfide (CZTS) and copper zinc tin selenide (CZTSe) absorber layers for the top and bottom cell, respectively, is proposed. The effects of different interconnect layers such as graphene, fluorine-doped tin oxide (FTO), indium tin oxide (ITO), and a p+n+ tunnel junction consisting of CZTS and CdS on the performance of the cell are investigated, revealing that the p+n+ tunnel junction results in the best performance. The impact of adding a thin SnS layer under the absorber layers to reduce recombination is also examined, revealing a significant improvement in cell performance. The optimized thicknesses of the buffer and absorber layers are obtained in all cases. The maximum efficiency of 26.21% is achieved in the optimum tandem device including the SnS layer and p+n+ tunnel junction, being much higher than results for previous structures. Finally, the effect of the absorber bandgap energy on the performance of the tandem cells is investigated.

This is a preview of subscription content, log in to check access.


  1. 1.

    A. Reshak, K. Nouneh, I. Kityk, J. Bila, S. Auluck, H. Kamarudin, and Z. Sekkat, Int. J. Electrochem. Sci. 9, 955 (2014).

  2. 2.

    S. Vallisree, R. Thangavel, and T. Lenka, J. Mater. Sci. Mater. Electron. 29, 7262 (2018).

  3. 3.

    A.D. Adewoyin, M.A. Olopade, and M. Chendo, Opt. Quant. Electron. 49, 336 (2017).

  4. 4.

    D. Benmoussa, H. Benslimane, A. Helmaoui, and A. Hemmani, J. Electr. Eng 12, 4924 (2014).

  5. 5.

    K. Shaoying, W. Chong, P. Tao, Y. Jie, and Y. Yu, J. Semicond 35, 034013 (2014).

  6. 6.

    H. Arbouz, A. Aissat, and J.P. Vilcot, Int. J. Hydrogen Energy 42, 8827 (2016).

  7. 7.

    M. Patel and A. Ray, Phys. B 407, 4391 (2012).

  8. 8.

    T. Todorov, T. Gershon, O. Gunawan, C. Sturdevant, and S. Guha, Appl. Phys. Lett. 105, 173902 (2014).

  9. 9.

    U. Saha and M.K. Alam, RSC Adv. 7, 4806 (2017).

  10. 10.

    M. Elbar, S. Tobbeche, and A. Merazga, Sol. Energy 122, 104 (2015).

  11. 11.

    A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering (Wiley, 2011).

  12. 12.

    Y. Xu and J. Liu, Small 12, 1400 (2016).

  13. 13.

    M. Reczulska, A. Niedzielska, and A. Jedrzejczak, Adv. Mater. Sci 15, 46 (2015).

  14. 14.

    Y. Kuang, Y. Liu, Y. Ma, J. Xu, X. Yang, X. Hong, and J. Feng, Adv. Condens. Matter Phys. 2015, 1 (2014).

  15. 15.

    E. Jung, S. Lee, S. Roh, E. Hwang, J. Lee, H. Lee, and J. Hwang, J. Phys. D Appl. Phys. 47, 265306 (2014).

  16. 16.

    J. Weber, V. Calado, and M. Sanden, Appl. Phys. Lett. 97, 091904 (2010).

  17. 17.

    M. Richter, C. Schubbert, P. Eraerds, I. Riedel, J. Keller, J. Parisi, T. Dalibor, and A. Hampe, Thin Solid Films 535, 33 (2013).

  18. 18.

    E. Palik, Handbook of Optical Constants of Solids (San Diego, London, Boston: Academic, 1998).

  19. 19.

    K. Ito, Copper Zinc Tin Sulfide-Based Thin-Film Solar Cells (Wiley, 2015).

  20. 20.

    A. Abdelrahman, W. Yunus, and A. Arof, J. Non-Cryst. Solids 358, 1447 (2012).

  21. 21.

    S. Hegde, A. Kunjoman, P. Murahari, B. Prasad, and K. Ramesh, Surf. Interfaces 10, 78 (2018).

  22. 22.

    P.H. Drive, Atlas User’s Manual Device Simulation Software (2016).

  23. 23.

    N. Boukortt and B. Hadri, J. Electron. Mater. 47, 5825 (2018).

  24. 24.

    M. Benaicha, L. Dehimi, and N. Sengouga, J. Semicond. 38, 044002 (2017).

  25. 25.

    M. Baudrit and C. Algora, in 33rd IEEE Photovoltaic Specialists Conference (2008).

  26. 26.

    B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S. Chey, and S. Guha, Prog. Photovolt. Res. Appl. 21, 72 (2013).

  27. 27.

    I. Lia, S. Kim, D. Nam, X. Liu, J. Kim, H. Cheong, W. Liu, H. Li, Y. Sun, and Y. Zhang, Sol. Energy Mater. Sol. Cells 159, 447 (2017).

  28. 28.

    B. Sciana, I. Lindert, D. Radziewicz, D. Pucicki, M. Panek, J. Jurenczyk, W. Dawidowski, M. Badura, and M.Tlaczala, in The Ninth International Conference on Advanced Semiconductor Devices and Microsystems IEEE (2012), pp. 243–246.

  29. 29.

    S. Meher, L. Balakrishnan, and Z. Ale, Superlattices Microstruct. 100, 703 (2016).

  30. 30.

    S. Benabbas, H. Heriche, Z. Rouabah, and N. Chelali, in North African Workshop on Dielectric Materials for Photovoltaic Systems (NAWDMPV) (2014).

  31. 31.

    M. Doriani, H. Jahromi, and M.H. Sheikhi, J. Sol. Energy Eng. 137, 064501 (2015).

  32. 32.

    Y. Ren, M. Richter, J. Keller, A. Redinger, T. Unold, O. Gargand, J. Scragg, and C. Bjorkman, ACS Energy Lett. 2, 976 (2017).

  33. 33.

    S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, T. Todorov, and D. Mitzi, Energy Environ. Sci. 5, 7060 (2012).

  34. 34.

    X. Song, X. Ji, M. Li, W. Lin, X. Luo, and H. Zhang, Int. J. Photoenergy 2014, 1 (2014).

  35. 35.

    S.A. Khalate, R.S. Kate, J.H. Kim, S.M. Pawar, and R.J. Deokate, Superlattices Microstruct. 103, 335 (2017).

  36. 36.

    S. Adachi, in Earth-Abundant Materials for Solar Cells: Cu2–II–IV–VI4 Semiconductors (Wiley, 2015), p. 363.

  37. 37.

    X. He, J. Pi, Y. Dai, and X. Li, Acta Metall. Sin (Engl. Lett.) 26, 285 (2013).

  38. 38.

    X. He, H. Shen, W. Wang, Z. Wang, B. Zhang, and X. Li, J. Alloys Compd. 556, 86 (2013).

Download references

Author information

Correspondence to Sajjad Dehghani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Amiri, S., Dehghani, S. Design of Highly Efficient CZTS/CZTSe Tandem Solar Cells. Journal of Elec Materi 49, 2164–2172 (2020).

Download citation


  • Thin-film solar cell
  • CZTS
  • CZTSe
  • tandem cell
  • finite element method (FEM)