Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Highly Enhanced Photoluminescence of Eu3+-Activated CaTiO3 Phosphors via Selective A-Site and B-Site Cation Substitutions (Sr2+ and Sn4+)

  • 12 Accesses

Abstract

Sr2+ and Sn4+ doped CaTiO3:Eu3+ phosphors were prepared by a high temperature solid-state method. X-ray diffraction characterization shows that the sample calcined at 1200°C is pure and has an orthorhombic crystal lattice. Photoluminescence (PL) measurement shows that CaTiO3:Eu3+ has five excitation peaks at 363 nm, 381 nm, 398 nm, 418 nm, and 466 nm, respectively corresponding to the transitions 7F0 → 5D4, 7F0 → 5L7, 7F0 → 5L6, 7F0 → 5D3 and 7F0 → 5D2 of Eu3+. The main emission peaks of CaTiO3:Eu3+ at 592 nm and 613 nm are ascribed to the 5D0 → 7FJ (J = 1, 2) transitions of Eu3+. In addition, PL emissions at 592 nm and 613 nm of CaTiO3:Eu3+ phosphors are enhanced remarkably through A-site substitution of Ca2+ with Sr2+ or B-site substitution of Ti4+ with Sn4+. Noticeably, the emission intensity of Ca(Ti,Sn)O3:Eu3+ is nearly three times higher than that of CaTiO3:Eu3+. The reason is that substitution of Ti4+ with Sn4+ induces a large lattice distortion, which promotes the 5D0 → 7F2 transition probability and thus enhances the emissions at 613 nm. It is also found that Sr2+ substitution narrows the optical bandgaps of CaTiO3:Eu3+ , while Sn4+ substitution widens them. In addition, chromatic purity of the phosphors shows a remarkable dependence on the asymmetric ratio.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Z. Zhou, N. Zhou, M. Xia, M. Yokoyama, and H.T. Hintzen, J. Mater. Chem. C 4, 9143 (2016).

  2. 2.

    R.-J. Xie and N. Hirosaki, Sci. Technol. Adv. Mater. 8, 588 (2007).

  3. 3.

    C.J. Duan, X.J. Wang, W.M. Otten, A.C.A. Delsing, J.T. Zhao, and H.T. Hintzen, Chem. Mater. 20, 1597 (2008).

  4. 4.

    R.-J. Xie and H.T. Hintzen, J. Am. Ceram. Soc. 96, 665 (2013).

  5. 5.

    M. Shivaram, H. Nagabhushana, S.C. Sharma, S.C. Prashantha, B.D. Prasad, N. Dhananjaya, R.H. Krishna, B.M. Nagabhushana, C. Shivakumara, and R.P.S. Chakradhar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 128, 891 (2014).

  6. 6.

    T. Puangpetch, T. Sreethawong, S. Yoshikawa, and S. Chavadej, J. Mol. Catal. A Chem. 287, 70 (2008).

  7. 7.

    H. Tiwari, S.A. Naidu, and U.V. Varadaraju, ChemistrySelect 3, 6321 (2018).

  8. 8.

    R. Singh, J. Kaur, P. Bose, R. Shrivastava, V. Dubey, and Y. Parganiha, J. Mater. Sci. Mater. Electron. 28, 13690 (2017).

  9. 9.

    F. Li, X. Liu, and T. He, Chem. Phys. Lett. 686, 78 (2017).

  10. 10.

    D.K. Singh and J. Manam, J. Mater. Sci. Mater. Electron. 29, 5579 (2018).

  11. 11.

    G. Jyothi and K.G. Gopchandran, Dyes Pigments 149, 531 (2018).

  12. 12.

    J.Q. Qi, J.X. Chang, R.Q. Zhang, Q.Q. Zhang, B.D. Liu, J. Chen, and X.M. Han, Ceram. Int. 44, 14342 (2018).

  13. 13.

    J. Fu, Q. Zhang, Y. Li, and H. Wang, J. Lumin. 130, 231 (2010).

  14. 14.

    M. Shivram, K.M. Girish, H.B. Premakumar, S.C. Prashantha, H.P. Nagaswarupa, K. Channakeshavalu, H. Nagabhushana, and K.R.V. Mahesh, Mater. Today Proc. 4, 11720 (2017).

  15. 15.

    L. Wang, Z. Dai, R. Zhou, B. Qu, and X.C. Zeng, PCCP 20, 16992 (2018).

  16. 16.

    B. Evangeline, P.A. Azeem, R.P. Rao, G. Swati, and D. Haranath, J. Alloys Compd. 705, 618 (2017).

  17. 17.

    A. Maurya, A. Dwivedi, A. Bahadur, and S.B. Rai, J. Alloys Compd. 786, 457 (2019).

  18. 18.

    M. Venugopal, H.P. Kumar, R. Satheesh, and R. Jayakrishnan, Int. J. Appl. Ceram. Technol. 16, 1228 (2019).

  19. 19.

    M. Tsega and F.B. Dejene, Bull. Mater. Sci. 40, 1347 (2017).

  20. 20.

    B. Zhang, M. Shi, D. Zhang, Y. Guo, C. Chang, and W. Song, J. Mater. Sci. Mater. Electron. 28, 11624 (2017).

  21. 21.

    N. Park, K.H. Jung, H.L. Park, Y. Song, H.S. Moon, K.C. Kim, S.I. Mho, and T.W. Kim, J. Mater. Sci. Lett. 13, 1252 (1994).

  22. 22.

    Z. Liu, R. Yuan, D. Xue, W. Cao, and T. Lookman, Acta Mater. 157, 155 (2018).

  23. 23.

    K. Muthamilselvam, M. Mayarani, G.M. Muralikrishna, M. Battabyal, and R. Gopalan, Mater. Res. Express 6, 045905 (2019).

  24. 24.

    Q. Ning, B. Quan, and Y. Shi, J. Lumin. 206, 498 (2019).

  25. 25.

    H. Zhang, G. Chen, X. He, and J. Xu, J. Alloys Compd. 516, 91 (2012).

  26. 26.

    C. Zhao, Y. Xu, L. Wang, X. Chen, W. Hu, Z. Dai, M. Hu, K. Liu, and M. Shi, J. Mater. Sci. Mater. Electron. 30, 11419 (2019).

  27. 27.

    X. Tian, S. Lian, C. Ji, Z. Huang, J. Wen, Z. Chen, H. Peng, S. Wang, J. Li, J. Hu, and Y. Peng, J. Alloys Compd. 784, 628 (2019).

  28. 28.

    D.K. Singh and J. Manam, Electron. Mater. Lett. 13, 292 (2017).

  29. 29.

    L.H. Oliveira, J. Savioli, A.P. de Moura, I.C. Nogueira, M.S. Li, E. Longo, J.A. Varela, and I.L.V. Rosa, J. Alloys Compd. 647, 265 (2015).

  30. 30.

    D.K. Singh, P.K. Baitha, and J. Manam, J. Appl. Phys. A 122, 668 (2016).

  31. 31.

    T.S. Sreena, P. Prabhakar-Rao, A.K.V. Raj, and T.R. Aju-Thara, Phys. Chem. Chem. Phys. 20, 24287 (2018).

  32. 32.

    F. Chi, Y. Qin, S. Zhou, X. Wei, Y. Chen, C. Duan, and M. Yin, Curr. Appl. Phys. 17, 24 (2017).

  33. 33.

    R. Shrivastava, J. Fluoresc. 29, 369 (2019).

Download references

Author information

Correspondence to Yudong Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xu, Y., Zhao, C. et al. A Highly Enhanced Photoluminescence of Eu3+-Activated CaTiO3 Phosphors via Selective A-Site and B-Site Cation Substitutions (Sr2+ and Sn4+). Journal of Elec Materi 49, 1969–1979 (2020). https://doi.org/10.1007/s11664-019-07896-y

Download citation

Keywords

  • Perovskite
  • CaTiO3
  • phosphors
  • cation substitutions