Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Evaluation of Cu-TSV Barrier Materials as a Solution to Copper Protrusion

Abstract

The development of three-dimensional large-scale integration is technically contingent upon the optimization of through-silicon via (TSV) performance. One of the intriguing challenges in the fabrication of Cu-TSV is the minimization of copper protrusion after heat treatment of TSV or any thermal cycle. Plastic behavior of copper in the temperature range of the annealing process causes the copper to protrude out of the via and damage the upper layers. Since using copper and silicon as the main constituents of the Cu-TSV is inevitable, the best solution to the copper protrusion seems to be confined to finding the best material for the barrier. The barrier is basically a liner preventing copper diffusion into the silicon. However, the material of the barrier must be selected wisely in order to assign multiple tasks to it, including the prevention of the copper protrusion. In this paper, the effects of the barrier properties on copper protrusion are evaluated, and the most proper materials for the barrier of Cu-TSV are suggested. A physical explanation of the protrusion phenomenon and the way that barrier material can minimize the protrusion are also presented.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    H. Ilatikhameneh, T. Ameen, B. Novakovic, Y. Tan, G. Klimeck, and R. Rahman, Sci. Rep. 6, 31501 (2016). https://doi.org/10.1038/srep31501.

  2. 2.

    N.Z. Haron and S. Hamdioui, in Proc. Design and Test Workshop 2008. IDT 2008. 3rd International, 98 (2008) https://doi.org/10.1109/idt.2008.4802475.

  3. 3.

    J.P. Gambino, S.A. Adderly, and J.U. Knickerbocker, Microelectron. Eng. 135, 73 (2015).

  4. 4.

    B. Liu, A. Satoh, K. Tamahashi, Y. Sasajima, and J. Onuki, Trans. Japan Inst. Electron. Pack. 11, E17-014-1 (2018). https://doi.org/10.5104/jiepeng.11.e17-014-1.

  5. 5.

    A. Satoh, H. Kadota, T. Inami, K. Tamahashi, M. Ito, and J. Onuki, Trans. Japan Inst. Electron Pack. 9, E16-010-1 (2016). https://doi.org/10.5104/jiepeng.9.e16-010-1.

  6. 6.

    C. Okoro, K. Vanstreels, R. Labie, O. Luhn, B.T. Vandevelde, B. Verlinden, and D. Vandepitte, J. Micromech. Microeng. 20, 045032 (2010). https://doi.org/10.1088/0960-1317/20/4/045032.

  7. 7.

    P. Kumar, I. Dutta, and M.S. Bakir, J. Electron. Mater. 41, 322 (2012). https://doi.org/10.1007/s11664-011-1726-6.

  8. 8.

    E.J. Cheng and Y.L. Shen, Microelectron. Reliab. 52, 534 (2012). https://doi.org/10.1016/j.microrel.2011.11.001.

  9. 9.

    T. Jiang, S.K. Ryu, J. Im, R. Huang, and P.S. Ho, AIP Conf. Proc. 1601, 55 (2014). https://doi.org/10.1063/1.4881340.

  10. 10.

    T. Jiang, S.K. Ryu, Q. Zhao, J. Im, P.S. Ho, and R. Huang, AIP Conf. Proc. 1601, 148 (2014). https://doi.org/10.1063/1.4881348.

  11. 11.

    J. Auersperg, D. Vogel, E. Auerswald, S. Rzepka, and B. Michel, AIP Conf. Proc. 1601, 138 (2014). https://doi.org/10.1063/1.4881347.

  12. 12.

    S.K. Ryu, T. Jiang, K.H. Lu, J. Im, H.Y. Son, K.Y. Byun, R. Huang, and P.S. Ho, Appl. Phys. Lett. 100, 041901 (2012). https://doi.org/10.1063/1.3678020.

  13. 13.

    X. Xu and A. Karmarkarb, AIP Conf. Proc. 1378, 53 (2011). https://doi.org/10.1063/1.3615695.

  14. 14.

    T. Jiang, Ch Wu, L. Spinella, J. Im, N. Tamura, M. Kunz, H.Y. Son, B.G. Kim, R. Huang, and P.S. Ho, Appl. Phys. Lett. 103, 211906 (2013). https://doi.org/10.1063/1.4833020.

  15. 15.

    T. Jiang, S.K. Ryu, Q. Zhao, J. Im, R. Huang, and P.S. Ho, Microelectron. Reliab. 53, 53–62 (2013). https://doi.org/10.1016/j.microrel.2012.05.008.

  16. 16.

    W. Feng, N. Watanabe, H. Shimamoto, M. Aoyagi, and K. Kikuchi, Microelectron. Reliab. 59, 95 (2016). https://doi.org/10.1016/j.microrel.2016.01.007.

  17. 17.

    N. Ranganathan, K. Prasad, N. Balasubramanian, and K.L. Pey, J. Micromech. Microeng. 18, 075018 (2008). https://doi.org/10.1088/0960-1317/18/7/075018.

  18. 18.

    P. Bayat, D. Vogel, R.D. Rodriguez, E. Sheremet, D.R.T. Zahn, S. Rzepka, and B. Michel, Microelectron. Eng. 137, 101 (2015). https://doi.org/10.1016/j.mee.2015.02.004.

Download references

Acknowledgments

The authors would like to thank Bin Liu for his valuable hints and for sharing his previous experiences in thermo-mechanical simulations.

Author information

Correspondence to Yazdan Zare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zare, Y., Sasajima, Y. & Onuki, J. Evaluation of Cu-TSV Barrier Materials as a Solution to Copper Protrusion. Journal of Elec Materi 49, 2076–2085 (2020). https://doi.org/10.1007/s11664-019-07894-0

Download citation

Keywords

  • Copper-filled through silicon via (Cu-TSV)
  • protrusion
  • barrier
  • simulation
  • finite element method (FEM)