Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Fabrication and Degradation Analysis of Perovskite Solar Cells with Graphene Reduced Oxide as Hole Transporting Layer

Abstract

Currently, the stability of perovskite solar cells (PSCs) is a critical challenge for the commercialization of such devices. A challenge in the structure of these devices is the ordinarily used hole transporting layer (HTL) which suffers from long-term instability. Considering the promised features of graphene derivatives (including their chemical resistance), we applied the graphene oxide (GO) and its reduced form (rGO) as the HTL. Also, the perovskite layer was deposited through two different routes named single-step and double-step methods. rGO was synthesized using GO through a facile procedure and deposited on the base support of the perovskite layer. Then the effect of the perovskite layer coating method and the application of GO or rGO as HTL on the stability and efficiency of the solar cell were investigated. Endurance assessments were done by running the cell for a long time at more than 1 month (720 h) in a dark environment. We achieved a power conversion efficiency (PCE) of 3.28% for perovskite solar cells which were made by a single-step perovskite deposition method with rGO as HTL. After 1 month running in an ambient atmosphere without any encapsulation, 50% of PCE was retained. The results prove that the as-prepared rGO can be an effective replacement for the common hole transporting materials for PSCs and these structures show higher performance stability compared to commonly used PEDOT: PSS as HTL.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    NREL (National Renewable Energy Laboratory), Best Research-Cell Efficiencies. Retrieved 2019 from https://www.nrel.gov/pv/assets/images/efficiency-chart.png.

  2. 2.

    H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, and J.E. Moser, Sci. Rep. 2, 591 (2012).

  3. 3.

    M. Acik, G. Lee, C. Mattevi, M. Chhowalla, K. Cho, and Y. Chabal, Nat. Mater. 9, 840 (2010).

  4. 4.

    K. Yan, Z. Wei, J. Li, H. Chen, Y. Yi, X. Zheng, X. Long, Z. Wang, J. Wang, and J. Xu, Small 11, 2269 (2015).

  5. 5.

    A. Agresti, S. Pescetelli, L. Cina, D. Konios, G. Kakavelakis, E. Kymakis, and A.D. Carlo, Adv. Funct. Mater. 26, 2686 (2016).

  6. 6.

    Z. Wu, S. Bai, J. Xiang, Z. Yuan, Y. Yang, W. Cui, X. Gao, Z. Liu, Y. Jin, and B. Sun, Nanoscale 6, 10505 (2014).

  7. 7.

    M. Acik and S.B. Darling, J. Mater. Chem. A. 4, 6185 (2016).

  8. 8.

    M. Batmunkh, C.J. Shearer, M.J. Biggs, and J.G. Shapter, J. Mater. Chem. A. 4, 2605 (2016).

  9. 9.

    Q. Zheng, Z. Li, J. Yang, and J.-K. Kim, Prog. Mater Sci. 64, 200 (2014).

  10. 10.

    J.T.-W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I.N. Mora-Sero, J. Bisquert, and H.J. Snaith, Nano Lett. 14, 724 (2013).

  11. 11.

    N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok, Nat. Mater. 13, 897 (2014).

  12. 12.

    M.M. Tavakoli, R. Tavakoli, S. Hasanzadeh, and M.H. Mirfasih, J. Phys. Chem. C 120, 19531 (2016).

  13. 13.

    M.M. Tavakoli, R. Tavakoli, Z. Nourbakhsh, A. Waleed, U.S. Virk, and Z. Fan, Adv. Mater. Interfaces 3, 1500790 (2016).

  14. 14.

    J.A. Christians, R.C. Fung, and P.V. Kamat, J. Am. Chem. Soc. 136, 758 (2014).

  15. 15.

    D. Li, J. Cui, H. Li, D. Huang, M. Wang, and Y. Shen, Sol. Energy 131, 176 (2016).

  16. 16.

    A. Giuri, S. Masi, S. Colella, A. Listorti, A. Rizzo, G. Gigli, A. Liscio, E. Treossi, V. Palermo, S. Rella, C. Malitesta, and C. Esposito Corcione, IEEE Trans. Nanotechnol. 15, 725 (2016).

  17. 17.

    J.-S. Yeo, R. Kang, S. Lee, Y.-J. Jeon, N. Myoung, C.-L. Lee, D.-Y. Kim, J.-M. Yun, Y.-H. Seo, S.-S. Kim, and S.-I. Na, Nano Energy 12, 96 (2015).

  18. 18.

    H. Chen, Y. Hou, C.E. Halbig, S. Chen, H. Zhang, N. Li, F. Guo, X. Tang, N. Gasparini, I. Levchuk, S. Kahmann, C.O. Ramirez Quiroz, A. Osvet, S. Eigler, and C.J. Brabec, J. Mater. Chem. A. 4, 11604 (2016).

  19. 19.

    T. Liu, D. Kim, H. Han, A.R. Yusoff, and J. Jang, Nanoscale 7, 10708 (2015).

  20. 20.

    J. Kim, M.A. Mat Teridi, A.R. Mohd Yusoff, and J. Jang, Sci. Rep. 6, 27773 (2016).

  21. 21.

    Q. Luo, Y. Zhang, C. Liu, J. Li, N. Wang, and H. Lin, J. Mater. Chem. A. 3, 15996 (2015).

  22. 22.

    T. Gatti, S. Casaluci, M. Prato, M. Salerno, F. Di Stasio, A. Ansaldo, E. Menna, A. Di Carlo, and F. Bonaccorso, Adv. Funct. Mater. 26, 7443 (2016).

  23. 23.

    J. Ye, X. Li, J. Zhao, X. Mei, and Q. Li, RSC Adv. 6, 36356 (2016).

  24. 24.

    A.L. Palma, L. Cina, S. Pescetelli, A. Agresti, M. Raggio, R. Paolesse, F. Bonaccorso, and A. Di Carlo, Nano Energy 22, 349 (2016).

  25. 25.

    S.-S. Li, K.-H. Lin, C.-W. Chen, and M. Chhowalla, ACS Nano 4, 3169 (2010).

  26. 26.

    G. Giovannetti, P.A. Khomyakov, G. Brocks, V.M. Karpan, J. van den Brink, and P.J. Kelly, Phys. Rev. Lett. 101, 026803 (2008).

  27. 27.

    G. Eda, C. Mattevi, H. Yamaguchi, H. Kim, and M. Chhowalla, J. Phys. Chem. C 113, 15768 (2009).

  28. 28.

    C. Mattevi, G. Eda, S. Agnoli, S. Miller, K.A. Mkhoyan, O. Celik, D. Mastrogiovanni, G. Granozzi, E. Garfunkel, and M. Chhowalla, Adv. Funct. Mater. 19, 2577 (2009).

  29. 29.

    J.-M. Yun, J.-S. Yeo, J. Kim, H.-G. Jeong, D.-Y. Kim, Y.-J. Noh, S.-S. Kim, B.-C. Ku, and S.-I. Na, Adv. Mater. 23, 4923 (2011).

  30. 30.

    C. Gómez-Navarro, R.T. Weitz, A.M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).

  31. 31.

    F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A.C. Ferrari, Mater. Today 15, 564 (2012).

  32. 32.

    G. Venugopala, K. Krishnamoorthya, R. Mohanc, and S.-J. Kim, Mater. Chem. Phys. 132, 29 (2012).

  33. 33.

    A. Kafi Kang, M.H. Zandi, and N.E. Gorji, Opt. Quant. Electron. 51, 91 (2019).

  34. 34.

    J. Wang, J. Li, X. Xu, Z. Bi, G. Xu, and H. Shen, RSC Adv. 6, 42413 (2016).

  35. 35.

    N. Jahanbakhshi Zadeh, M. Borhani Zarandi, and M.R. Nateghi, Thin Solid Film 660, 65 (2018).

Download references

Acknowledgments

This research is funded by the Foundation for Science and Technology Development of Ton Duc Thang University (FOSTECT), website: http://fostect.tdtu.edu.vn, under Grant FOSTECT.2019.18.

Author information

Correspondence to Nima E. Gorji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kang, A.K., Zandi, M.H. & Gorji, N.E. Fabrication and Degradation Analysis of Perovskite Solar Cells with Graphene Reduced Oxide as Hole Transporting Layer. Journal of Elec Materi 49, 2289–2295 (2020). https://doi.org/10.1007/s11664-019-07893-1

Download citation

Keywords

  • Perovskite solar cells
  • graphene
  • rGO
  • GO
  • stability
  • hole transporting layer