Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electronic Polarizability, Optical Basicity, Thermal, Mechanical and Optical Investigations of (65B2O3–30Li2O–5Al2O3) Glasses Doped with Titanate

  • 24 Accesses

Abstract

Titanium-doped and titanium-free lithium borate glasses were prepared using a quenching method and high-purity-grade chemical substances. Structural analysis was carried out by Fourier transform infrared (FT-IR) spectroscopy and mechanical measurement. The states of the produced glasses were examined by x-ray diffraction, and the density (ρ) and molar volume (Vm) were determined. The Makishima–Mackenzie model was applied for the prepared glasses. FT-IR confirmed that the concentration of [BO4] was greater than that of [BO3] structural units. These variations confirmed that the compactness of the lithium borate network increased as the concentration of (TiO2/B2O3) increased. The longitudinal (vL) and shear (vT) velocities of the samples with varying concentrations of (TiO2/B2O3) were found to increase, along with the elastic moduli. The thermal stability, energy gap, and refractive index of the prepared glasses increased as the concentration of (TiO2/B2O3) was increased.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    T.A. Taha and A.A. Azab, J. Electron. Mater. 45, 5170 (2016).

  2. 2.

    T.A. Taha and A.S. Abouhaswa, J. Mater. Sci.: Mater. Electron. 29, 8100 (2018).

  3. 3.

    P. Venkat-Reddy, C. Laxmi-kanth, V. Prasanth-Kumar, N. Veeraiah, and P. Kistaiah, J. Non-Cryst. Solids 351, 3752 (2005).

  4. 4.

    F. El-Diasty, M. Abdel-Baki, and F.A. Abdel-Wahab, Opt. Quant. Electron. 48, 273 (2016).

  5. 5.

    B.V.R. Chowdari and R. Zhou, Solid State Ionics 78, 133 (1995).

  6. 6.

    V. Naresh and S. Buddhudu, Ceram. Int. 38, 2325 (2012).

  7. 7.

    M.R. Ahmed, K.C. Sekhar, A. Hameed, M.N. Chary, and M. Shareefuddin, Int. J. Mod. Phys. B 32, 1850095 (2018).

  8. 8.

    T. Kalpana, Y. Gandhi, B. Sanyal, V. Sudarsan, P. Bragiel, M. Piasecki, V. Ravi kumar, and N. Veeraiah, J. Lumin. 179, 44 (2016).

  9. 9.

    C. Tirupataiah, T. Narendrudu, S. Suresh, P. Srinivasa Rao, P.M. Vinaya Teja, M.V. Sambasiva Rao, and D. Krishna Rao, Opt. Mater. 73, 7 (2017).

  10. 10.

    M. Abdel-Baki and F. El-Diasty, Int. J. Opt. Appl. 3, 125 (2013).

  11. 11.

    C.R. Gautam, S. Dixit, and A. Madheshiya, J. Spectrosc. Lett. 48, 280 (2015).

  12. 12.

    C Gautam, J. Phys. Res. Int. 1 (2014).

  13. 13.

    T.A. Taha and Y.S. Rammah, J. Mater. Sci.: Mater. Electron. 27, 1384 (2015).

  14. 14.

    M. Abdel-Baki, F. El-Diasty, and F.A. Abdel-Wahab, J. Mater. Chem. Phys. 96, 201 (2006).

  15. 15.

    A.M. Abdelghany and H.A. ElBatal, J. Non-Cryst. Solids 379, 214 (2013).

  16. 16.

    K.A. Aly, Y.B. Saddeek, and I.M.E. Kashef, J. Optoelectron. Adv Mater. 19, 623 (2017).

  17. 17.

    V.E. Eremyashev, G.G. Korinevskaya, and S.S. Bukalov, J. Glass Ceram. 72, 405 (2016).

  18. 18.

    Y.B. Saddeek, K.H.S. Shaaban, K.A. Aly, R.S. Farag, and M.M. Uosif, Int. J. Horiz. Phys. 2, 53 (2015).

  19. 19.

    A. Makishima and J.D. Mackenzie, J. Non-Cryst. Solids 12, 35 (1973).

  20. 20.

    A. Makishima and J.D. Mackenzie, J. Non-Cryst. Solids 17, 147 (1975).

  21. 21.

    K.S. Shaaban, S.M. Abo-naf, A.M. Abd Elnaeim, and M.E. Hassouna, Appl. Phys. A 123, 457 (2017).

  22. 22.

    Y. Moustafa, H. Doweidar, and G. El Damrawi, Phys. Chem. Glasses 35, 104 (1994).

  23. 23.

    E.I. Kamitsos, M.A. Karakassides, and G.D. Chryssikos, J. Phys. Chem. Glass. 91, 1067 (1987).

  24. 24.

    A.S. Tenny and J.S. Wang, J. Phys. 56, 5516 (1972).

  25. 25.

    A.K. Yadav, C.R. Gautam, A.K. Yadav, and C.R. Gautam, Lucknow J. Sci. 8, 26 (2011).

  26. 26.

    Ross, S. D. McGraw-Hill, New York, (1972).

  27. 27.

    A.S. Tenny and J.J. Wong, J. Chem. Phys. 56, 5516 (1972).

  28. 28.

    N. Elkhoshkhany, M.A. Khatab, and M.A. Kabary, Ceram. Int. 44, 2789 (2018).

  29. 29.

    R. Iordanova, V. Dimitrov, Y. Dimitriev, and D. Klissurski, J. Non-Cryst. Solids 180, 58 (1994).

  30. 30.

    W.M. Abd-Allah, H.A. Saudi, K.S. Shaaban, and H.A. Farroh, Appl. Phys. A 125(4) (2019).

  31. 31.

    G. Ramadevudu, S.R.L. Srinivasa, M.S.A. Hameed, and M.C. Narasimha, Int. J. Eng. Sci. Technol. 3, 6998 (2011).

  32. 32.

    R. Laopaiboon, S. Nontachat, S. Pencharee, J. Laopaiboon, and C. Bootjomchai, Radiat. Effect. Defects Solids 169, 862 (2014).

  33. 33.

    H. Doweidar, G. El-Damrawi, and Sh El-Stohy, Phys. B 525, 137 (2017).

  34. 34.

    Ulrike Veit and Christian Rüssel, J. Mater. Sci. 52, 8159 (2017).

  35. 35.

    K.S. Shaaban and Y.B. Saddeek, Silicon 9, 785 (2017).

  36. 36.

    K.H.S. Shaaban, Y.B. Saddeek, M.A. Sayed, and I.S. Yahia, Silicon 10, 1973 (2018).

  37. 37.

    Y.B. Saddeek, K.A. Aly, K.H.S. Shaaban, A. Mossad-Ali, and M.A. Sayed, Silicon 11, 1253 (2018).

  38. 38.

    D. Sushama and P. Predeep, J. Appl. Phys. Math. 4, 139 (2014).

  39. 39.

    E.A.A. Wahab and K.S. Shaaban, Mater. Res. Exp. 5, 025207 (2018).

  40. 40.

    M. Ren, S. Cai, W. Zhang, T. Liu, X. Wu, P. Xu, and D. Wang, J. Non-Cryst. Solids 380, 78 (2013).

  41. 41.

    T.A. Taha, Polym. Bull. 76, 903 (2019).

  42. 42.

    T.A. Taha, N. Hendawy, S. El-Rabaie, A. Esmat, and M.K. El-Mansy, Polym. Bull. 76, 4769 (2019).

  43. 43.

    T.A. Taha, J. Mater. Sci.: Mater. Electron. 28, 12108 (2017).

  44. 44.

    T.A. Taha and A. Saleh, Appl. Phys. A 124, 600 (2018).

  45. 45.

    T.A. Taha, Z. Ismail, and M.M. Elhawary, Appl. Phys. A 124, 307 (2008).

  46. 46.

    S. El-Rabaie, T.A. Taha, and A.A. Higazy, Phys. B 429, 1 (2013).

  47. 47.

    N.S. Sabri, A.K. Yahya, and M. Kumar-Talari, Trans. Indian Inst. Met. 70, 557 (2017).

  48. 48.

    M.A. Marzouk, F.H. ElBatal, and H.A. ElBatal, Opt. Mater. 57, 14 (2016).

  49. 49.

    F.H. ElBatal, M.A. Marzouk, and H.A. ElBatal, J. Mol. Struct. 1121, 54 (2016).

  50. 50.

    D. Saritha, Y. Markandeya, M. Salagram, M. Vithal, A.K. Singh, and G. Bhikshamaiah, J Non Cryst Solids 354, 5573 (2008).

  51. 51.

    S. Thakur, V. Thakur, A. Kaur, and L. Singh, J. Non. Cryst. Solids 512, 60 (2019).

  52. 52.

    V. Thakur, A. Singh, R. Punia, M. Kaur, and L. Singh, Cera. Inter. 41, 10957 (2015).

  53. 53.

    V. Dimitrov and S.I. Sakka, J. Appl. Phys. 79, 1736 (1996).

  54. 54.

    V. Dimitrov and T. Komatsu, J. Solid-State Chem. 163, 100 (2002).

  55. 55.

    L. Singh, V. Thakur, R. Punia, R.S. Kundu, and A. Singh, Solid State Sci. 37, 64 (2014).

Download references

Acknowledgments

The authors are grateful to Al-Azhar University for support with the experimental measurements. In addition, the authors thank the Deanship of Scientific Research at King Khalid University (KKU) for funding this research project (No. R.G.P2./22/40) under the Research Center for Advanced Materials Science.

Author information

Correspondence to Kh. S. Shaaban.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shaaban, K.S., Wahab, E.A.A., Shaaban, E.R. et al. Electronic Polarizability, Optical Basicity, Thermal, Mechanical and Optical Investigations of (65B2O3–30Li2O–5Al2O3) Glasses Doped with Titanate. Journal of Elec Materi 49, 2040–2049 (2020). https://doi.org/10.1007/s11664-019-07889-x

Download citation

Keywords

  • Electronic polarizability
  • optical basicity
  • mechanical
  • thermal
  • refractive index