Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Electrochemical Performance of Nanocrystalline Vanadium Pentoxide Thin Films Grown by RF Magnetron Sputtering

  • 17 Accesses

Abstract

Nanocrystalline V2O5 thin films were prepared by radio frequency (RF) magnetron sputtering and explored as potential electrodes for Li-ion microbatteries and supercapacitors based on microstructure and electrochemical properties. All the films grown in the substrate temperature (Ts) range 250–350°C exhibited predominant (001) orientation corresponding to the orthorhombic V2O5 layered structure. However, notable changes were observed in the surface morphology and crystallite size of the grown films by varying the substrate temperature. The films deposited at Ts of 250°C showed uniformly distributed spherical grain morphology and demonstrated pseudocapacitive behavior with a specific capacitance of 960 mF cm−2 at current density of 1 mA cm−2 with good cycle stability. The films deposited at Ts of 350°C showed needle like nanorod structure with an average crystallite size of 36 nm. These films exhibited sharp oxidation and reduction peaks, exhibiting cathodic behavior with a discharge capacity of 62.6 μAh cm−2 μm−1 at a current rate of 50 μA.

Graphic Abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G.P. Pandey, T. Liu, E. Brown, Y. Yang, Y. Li, X.S. Sun, Y. Fang, and J. Li, ACS Appl. Mater. Interfaces 8, 9200 (2016).

  2. 2.

    A. Lashmi Narayana, M. Dhananjaya, N. Guru Prakash, O.M. Hussain, and C.M. Julien, Ionics 23, 3419 (2017).

  3. 3.

    I. Mjejri, N. Etteyeb, and F. Sediri, Ceram. Int. 40, 1387 (2014).

  4. 4.

    M. Dhananjaya, N. Guru Prakash, A. Lakshmi Narayana, and O.M. Hussain, Appl. Phys. A 124, 185 (2018).

  5. 5.

    S.Z. Huang, Y. Cai, J. Jin, Y. Li, X.F. Zheng, H.E. Wang, M. Wu, L.H. Chen, and B.L. Su, J. Mater. Chem. A 2, 14099 (2014).

  6. 6.

    M. Winter and R.J. Brodd, Chem. Rev. 104, 4245 (2004).

  7. 7.

    Y. Yan, Q. Chenga, G. Wang, and C. Li, J. Power Sour. 196, 7835 (2011).

  8. 8.

    J. Denayar, G. Bister, P. Simonis, P. Colson, A. Maho, P. Aubry, B. Vertruyen, C. Henrist, V. Lardot, F. Cambier, and R. Cloots, Appl. Surf. Sci. 321, 61 (2014).

  9. 9.

    C. Quinonez, W. Vallejo, and G. Gordillo, Appl. Surf. Sci. 256, 4065 (2010).

  10. 10.

    T. Kondo, Y. Matsushima, K. Matsuda, and H. Unuma, J. Mater. Sci. Mater. Electron. 27, 8001 (2016).

  11. 11.

    G. Sajiki, Y. Benino, T. Nanba, and H. Okano, Mater. Sci. Appl. 6, 292 (2015).

  12. 12.

    F. Cheng, C. He, D. Shua, H. Chen, J. Zhang, S. Tang, and E.D. Finlow, Mater. Chem. Phys. 131, 268 (2011).

  13. 13.

    A. Lashmi Narayana, M. Dhananjaya, N. Guru Prakash, A. Mauger, C.M. Julien, and O.M. Hussain, Heliyon 5, e02060 (2019).

  14. 14.

    P. Jeevan-Kumar, K. Jayanth-Babu, and O.M. Hussain, Mater. Chem. Phys. 143, 536 (2014).

  15. 15.

    S.J. Dillon and K. Sun, Curr. Opin. Solid State Mater. Sci. 16, 153 (2012).

  16. 16.

    C. Shi, K. Xiang, Y. Zhu, X. Chen, W. Zhou, and H. Chen, Electrochim. Acta 246, 1088 (2017).

  17. 17.

    C. Liu and L. Liu, J. Electrochem. Soc. 164, E3254 (2017).

  18. 18.

    Y. He, K. Xiang, W. Zhou, Y. Zhu, X. Chen, and H. Chen, Chem. Eng. J. 353, 666 (2018).

  19. 19.

    R. Tatara, P. Karayaylali, Y. Yu, Y. Zhang, L. Giordano, F. Maglia, R. Jung, J.P. Schmidt, I. Lund, and Y. Shao-Horn, J. Electrochem. Soc. 166, A5090 (2019).

  20. 20.

    Y. Chen, K. Xiang, Y. Zhu, L. Xiao, W. Chen, X. Chen, and H. Chen, J. Alloys Compd. 782, 89 (2019).

  21. 21.

    M.C. Rao, Res. J. Recent Sci. 2, 67 (2013).

  22. 22.

    C.M. Julien and A. Mauger, AIMS Mater. Sci. 5, 349 (2018).

  23. 23.

    S. Beke, Thin Solid Films 519, 1761 (2011).

  24. 24.

    N. Fieldhouse, S.M. Pursel, M.W. Horn, and S.S.N. Bharadwaja, J. Phys. D Appl. Phys. 42, 055408 (2009).

  25. 25.

    K.H. Chen, C.H. Liao, J.H. Tsai, and S. Wu, Appl. Phys. A 110, 211 (2013).

  26. 26.

    T. Babeva, H. Awala, J. Grand, K. Lazarova, M. Vasileva, and S. Mintova, J. Phys. Conf. Ser. 992, 012038 (2018).

  27. 27.

    T. Abdul-Hameed Abbas, J. Electron. Mater. 47, 7331 (2018).

  28. 28.

    C.V. Ramana, O.M. Hussain, B.S. Naidu, and P.J. Reddy, Thin Solid Films 305, 219 (1997).

  29. 29.

    B. Purusottam Reddy, K. Sivajee Ganesh, and O.M. Hussain, Appl. Phys. A Mater. Sci. Process. 122, 128 (2016).

  30. 30.

    K. Hari Krishna and O.M. Hussain, Ionics 19, 1359 (2013).

  31. 31.

    P. Rosaiah and O.M. Hussain, AIP Conf. Proc. 145, 236 (2012).

  32. 32.

    C. Julien, E. Haro-Poniatowski, M.A. Camacho-Lopez, L. Escobar-Alarcon, and J. Jimenez-Jarquin, Mater. Sci. Eng. B 65, 170 (1999).

  33. 33.

    C.V. Ramana, R.J. Smith, O.M. Hussain, C.C. Chusuei, and C.M. Julien, Chem. Mater. 17, 1213 (2005).

  34. 34.

    Y.Q. Chu and Q.Z. Qin, Chem. Mater. 14, 3152 (2002).

  35. 35.

    S. Petnikota, R. Chua, Y. Zhou, E. Edison, and M. Srinivasan, Nanoscale Res. Lett. 13, 363 (2018).

  36. 36.

    Y.S. Yoon, J.S. Kim, and S.H. Choi, Thin Solid Films 460, 41 (2004).

  37. 37.

    Y.J. Park, N.G. Park, K. Ryu, S.H. Chang, S.C. Park, S.M. Yoon, and D.K. Kim, Bull. Kor. Chem. Soc. 22, 1015 (2001).

  38. 38.

    M. Abdel-Rahman, M. Zia, and M. Alduraibi, Sensors 19, 1320 (2019).

  39. 39.

    A. Rakshit, D. Biswas, and S. Chakraborty, AIP Conf. Proc. 1942, 120024 (2018).

  40. 40.

    G. Lakshmi Sandhya, M. Dhananjaya, N. Guru Prakash, A. Lakshmi Narayana, P. Rosaiah, and O.M. Hussain, IOSR J. Appl. Chem. 10, 64 (2017).

  41. 41.

    G.J. Fang, Z.L. Liu, Y. Wang, Y.H. Liu, and K.L. Yao, J. Vac. Sci. Technol. A 19, 887 (2001).

  42. 42.

    C.V. Ramana, R.J. Smith, O.M. Hussain, and C.M. Julien, J. Vac. Sci. Technol. A 22, 2453 (2004).

  43. 43.

    P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, and B.S. Dassanayake, Mater. Sci. Semicond. Process. 58, 51 (2017).

  44. 44.

    O.M. Hussain, K. Harikrishna, V. Kalaivani, and C.M. Julien, Ionics 13, 455 (2007).

  45. 45.

    D. Singh, W.S. Kim, V. Cracium, H. Hofmann, and R.K. Singh, Appl. Surf. Sci. 197, 516 (2002).

  46. 46.

    K. Hari Krishna, O.M. Hussain, and C.M. Julien, Appl. Phys. A 99, 921 (2010).

  47. 47.

    G.J. Fang, Z.L. Liu, Y.Q. Wang, H.H. Liu, and K.L. Yao, J. Phys. D 33, 3018 (2000).

  48. 48.

    C. Liu, Z.G. Neale, and G. Cao, Mater. Today Proc. 19, 109 (2016).

  49. 49.

    Y. Zhang and Y. Huang, Bull. Mater. Sci. 40, 1137 (2017).

  50. 50.

    E. Umeshbabu and G. Ranga Rao, J. Colloid Interface Sci. 472, 210 (2016).

  51. 51.

    V. Augustyn, P. Simon, and B. Dunn, Energy Environ. Sci. 7, 1597 (2014).

  52. 52.

    C.C. Hu and J.Y. Lin, Electrochim. Acta 47, 4055 (2002).

  53. 53.

    K.H. Kim, D.K. Roh, I.K. Song, B.C. Lee, and S.H. Baeck, J. Solid State Electrochem. 14, 1801 (2010).

  54. 54.

    Y. Wang and G. Cao, Electrochim. Acta 51, 4865 (2006).

  55. 55.

    C. Delmas, H. Cognac-Auradou, J.M. Cocciantelli, M. Menetrier, and J.P. Doumerc, Solid State Ion. 69, 257 (1994).

  56. 56.

    B. Hu, L. Li, X. Xiong, L. Liu, C. Huang, D. Yu, and C. Chen, J. Solid State Electrochem. (2019). https://doi.org/10.1007/s10008019-04220-w.

  57. 57.

    Y. Yue and H. Liang, Adv. Energy Mater. 7, 1602545 (2017).

  58. 58.

    E. Pomerantseva, K. Gerasopoulos, X. Chen, G. Rubloff, and R. Ghodssi, J. Power Sour. 206, 282 (2012).

  59. 59.

    C. Navone, R.B. Hadjean, J.P. Pereira-Ramos, and R. Salot, J. Electrochem. Soc. 156, A763 (2009).

  60. 60.

    S. Oukassi, R. Salot, and J.P. Pereira-Ramos, Appl. Surf. Sci. 256, 149 (2009).

  61. 61.

    Y.S. Kim, H.S. Shim, and T.Y. Seong, Solid State Ion. 177, 1323 (2006).

  62. 62.

    A. Achour, R.L. Porto, S. Solaymani, M. Islam, I. Ahmad, and T. Brousse, J. Mater. Sci. Mater. Electron. 29, 13125 (2018).

  63. 63.

    R. Velmuragan, J. Premkumar, R. Pitchai, M. Ulaganathan, and B. Subramanian, ACS Sustain. Chem. Eng. 7, 13115 (2019).

  64. 64.

    N. Guru Prakash, M. Dhananjaya, B. Purusottam Reddy, K. Sivajee Ganaesh, A. Lakshmi Narayana, and O.M. Hussain, Mater. Today Proc. 3, 4076 (2016).

  65. 65.

    M. Dhananjaya, N. Guru Prakash, G. Lakshmi Sandhya, A. Lakshmi Narayana, and O.M. Hussain, Mech. Mater. Sci. Eng. (2017). https://doi.org/10.2412/mmse.88.66.781.

Download references

Author information

Correspondence to O. M. Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dhananjaya, M., Guru Prakash, N., Lakshmi Narayana, A. et al. Electrochemical Performance of Nanocrystalline Vanadium Pentoxide Thin Films Grown by RF Magnetron Sputtering. Journal of Elec Materi 49, 1922–1934 (2020). https://doi.org/10.1007/s11664-019-07878-0

Download citation

Keywords

  • V2O5 thin films
  • RF magnetron sputtering
  • microstructure
  • electrochemical properties