Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Dielectric Properties and AC Conductivity of Organic Films of Copper(II) 2,9,16,23-Tetra-tert-butyl-29H,31H- phthalocyanine

  • 40 Accesses

Abstract

Copper(II) 2,9,16,23-tetra-tert-butyl-29H,31H-phthalocyanine (CuTTBPc) thin films have been obtained using a physical vapor deposition technique. X-ray diffraction analysis confirmed their amorphous nature. The dielectric constant and electrical conductivity were measured over the frequency range from 50 Hz to 8 MHz and temperature range from 293 K to 393 K. The dependence of the dielectric relaxation spectra on frequency at different temperatures was measured and discussed. In addition, the spectral dynamics of both the real and imaginary parts of the complex electric modulus over a wide temperature range is explained. The activation energy of the relaxation process (ΔEM) was estimated to be 0.26 eV. Moreover, the dependence of the alternating current conductivity on both temperature and frequency was investigated. Additionally, the exponent (s) of the power law of conductivity versus temperature confirmed that the correlated barrier hopping (CBH) model is a successful and appropriate mechanism to explain the charge transportation inside CuTTBPc films. According to this model, the density of localized states N(EF) at room temperature and frequency of 500 kHz was evaluated to be 4.11 × 1023 eV−1 cm−3. This high density of electron states indicates that CuTTBPc can be recommended as a candidate material for use in solar cells.

References

  1. 1.

    N. Bouazizia, S. Louhichia, R. Ouarglic, R. Bargouguid, J. Vieillard, F. Le Derfa, and A. Azzouze, Appl. Surf. Sci. 404, 146 (2017).

  2. 2.

    N. Bouazizi, F. Ajala, A. Bettaibi, M. Khelil, A. Benghnia, R. Bargougu, S. Louhichi, L. Labiadh, R. Ben Slama, B. Chaouachi, K. Khiroun, A. Houas, and A. Azzouz, J. Alloys Compd. 656, 146 (2016).

  3. 3.

    T. An, W. Gong, and J. Ma, Org. Electron. 67, 320 (2019).

  4. 4.

    M.M. El-Nahass and K.F. AbdEl-Rahman, J. Alloys Compd. 430, 194 (2007).

  5. 5.

    S.I. Qashou, A.A.A. Darwish, and S.E. Al Garni, Synth. Met. 242, 67 (2018).

  6. 6.

    A.A.A. Darwish, S.I. Qashou, Z. Khattari, M.M. Hawamdeh, A. Aldrabee, and S.E. Al Garni, J. Electron. Mater. 47, 7196 (2018).

  7. 7.

    I.M. Soliman, M.M. El-Nahass, and Y. Mansour, Solid State Commun. 225, 17 (2016).

  8. 8.

    Z.T. Deng, H.M. Guo, W. Guo, L. Gao, Z.H. Cheng, D.X. Shi, and H.-J. Gao, J. Phys. Chem. C 113, 11223 (2009).

  9. 9.

    R.D. Gould and A.K. Hassan, Thin Solid Films 223, 334 (1993).

  10. 10.

    M.M. El-Nahass, E.F.M. El-Zaidia, A.A.A. Darwish, and G.F. Salem, J. Electron. Mater. 46, 1093 (2017).

  11. 11.

    J.W. Perry, K. Mansour, I.-Y.S. Lee, X.-L. Wu, P.V. Bedworth, C.-T. Chen, D. Ng, S.R. Marder, P. Miles, T. Wada, M. Tian, and H. Sasabe, Science 273, 1533 (1996).

  12. 12.

    A.A.A. Darwish, S.I. Qashou, and M. Rashad, Appl. Phys. A 125, 271 (2019).

  13. 13.

    A.A.A. Darwish, E.F.M. El-Zaidia, M.M. El-Nahass, T.A. Hanafy, and A.A. Al-Zubaidi, J. Alloys Compd. 589, 393 (2014).

  14. 14.

    S.I. Qashou, M. Rashad, A.Z. Mahmoud, and A.A.A. Darwish, Vacuum 162, 199 (2019).

  15. 15.

    S.I. Qashou, A.A.A. Darwish, M. Rashad, and Z. Khattari, Phys. B 525, 159 (2017).

  16. 16.

    N. Bouazizi, R. Bargougui, A. Benghnia, J. Vieillard, S. Ammar, and A. Azzouz, RSC Adv. 6, 95405 (2016).

  17. 17.

    Matthias Kaes and Martin Salinga, Sci. Rep. 6, 31699 (2016).

  18. 18.

    D. Yokoyama, J. Mater. Chem. 21, 9187 (2011).

  19. 19.

    A.P. Kulkarni, C.J. Tonzola, A. Babel, and S.A. Jenekhe, Chem. Mater. 16, 4556 (2004).

  20. 20.

    Y. Shirota and H. Kageyama, Chem. Rev. 107, 953 (2007).

  21. 21.

    L. Xiao, Z. Chen, B. Qu, J. Luo, S. Kong, Q. Gong, and J. Kido, Adv. Mater. 23, 926 (2011).

  22. 22.

    R.P. Jebin, T. Suthan, N.P. Rajesh, and G. Vinitha, Opt. Laser Technol. 115, 500 (2019).

  23. 23.

    X. Li, W. Xua, Y. Zhang, D. Xub, G. Wanga, and Z. Jianga, RSC Adv. 5, 51542 (2015).

  24. 24.

    S.I. Qashou, A.A.A. Darwish, S.R. Alharbi, S.E. Al Garni, and T.A. Hanafy, J. Mater. Sci: Mater. Electron. 28, 14252 (2017).

  25. 25.

    S. Zhong, J.Q. Zhong, A.T.S. Wee, and W. Chen, J. Electron Spectrosc. Relat. Phenom. 204, 12 (2015).

  26. 26.

    R. Bargougui, N. Bouazizi, S. Ammar, and A. Azzouz, J. Electron. Mater. 46, 85 (2017).

  27. 27.

    E.M. El-Menyawy, H.M. Zeyad, and M.M. El-Nahass, Solid State Sci. 12, 2182 (2010).

  28. 28.

    F.S. Howell, R.A. Bose, P.B. Maced, and C.T. Moynihan, Phys. Chem. 78, 639 (1974).

  29. 29.

    T.A. Abdel-Baset and A. Hassen, Phys. B 499, 24 (2016).

  30. 30.

    A.A. Attia, H.S. Soliman, M.M. Saadeldin, and K. Sawaby, Synth. Met. 205, 139 (2015).

  31. 31.

    M.M. El-Nahass and H.A.M. Ali, Solid State Commun. 152, 1084 (2012).

  32. 32.

    YuA Vidadi, L.D. Rozenshtein, and E.A. Chistyakov, Sov. Phys. Solid State 11, 173 (1969).

  33. 33.

    S.A. James, A.K. Ray, and S. Silver, Phys. Status Solidi A 129, 435 (1992).

  34. 34.

    A.O. Abu-Hilal, A.M. Saleh, and R.D. Gould, Mater. Chem. Phys. 94, 165 (2005).

  35. 35.

    M.M. El-Nahass, A.A. Atta, M.A. Kamel, and S.Y. Huthaily, Vacuum 91, 14 (2013).

  36. 36.

    N. Bouazizi, F. Ajala, M. Khelil, H. Lachheb, K. Khirouni, A. Houas, and A. Azzouz, J. Mater. Sci. Mater. Electron. 27, 11168 (2016).

  37. 37.

    G. Singh, N. Goyal, G.S.S. Saini, and S.K. Tripathi, J. Non-Cryst. Solids 353, 1322 (2007).

  38. 38.

    V. Modgil and V.S. Rangra, Phys. B 445, 14 (2014).

Download references

Author information

Correspondence to Saleem I. Qashou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Darwish, A.A.A., Alharbi, S.R., Hawamdeh, M.M. et al. Dielectric Properties and AC Conductivity of Organic Films of Copper(II) 2,9,16,23-Tetra-tert-butyl-29H,31H- phthalocyanine. Journal of Elec Materi 49, 1787–1793 (2020). https://doi.org/10.1007/s11664-019-07869-1

Download citation

Keywords

  • Organic film
  • dielectric relaxation
  • electrical conductivity