Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

TiO2/Bi5O7I Composite Films for Dye-Sensitized Solar Cells

  • 48 Accesses

Abstract

Bi5O7I is one of the bismuth oxyiodides family members which is commonly utilized for photocatalyst, but it has not been applied yet as a photovoltaic material. Herein, we study the effect of Bi5O7I addition to TiO2 for the photovoltaic device which worked based on the dye-sensitized solar cell (DSSC). A better photovoltaic performance was performed by using TiO2/Bi5O7I composite than the TiO2 based DSSC. The different ratios of Bi5O7I mixed with TiO2 resulted in the TiO2/Bi5O7I composite material films which were characterized on their structural, morphological, and optical properties. X-ray diffraction and scanning electron microscope analysis results displayed the crystal character and the morphology of Bi5O7I and TiO2 in our films. In addition, the existence of Bi5O7I in the films had an impact on the decreasing in the bandgap energy of composite materials. Moreover, the solar cell performance test with I/I3 electrolyte solution, Pt-FTO counter electrode, and N719 dye was carried out to the composite cells. As a result, there was a slight increase in the current density and open-circuit voltage. Also, the cell efficiency could enhance up to 60% in comparison to the TiO2-DSSC in this report.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    B. O’Regan and M. Grätzel, Nature 353, 737 (1991).

  2. 2.

    M.S.H. Choudhury, N. Kishi, and T. Soga, Jpn. J. Appl. Phys. 55, 01AE13 (2016).

  3. 3.

    M.S.H. Choudhury, N. Kishi, and T. Soga, J. Alloys Compd. 656, 476 (2016).

  4. 4.

    M.S. Haque Choudhury, N. Kishi, and T. Soga, Mater. Res. Bull. 80, 135 (2016).

  5. 5.

    M.S.H. Choudhury, S. Kato, N. Kishi, and T. Soga, Jpn. J. Appl. Phys. 56, 04CS05 (2017).

  6. 6.

    A.A. Abuelwafa, M.S.H. Choudhury, M. Dongol, M.M. El-Nahass, and T. Soga, J. Mater. Sci.: Mater. Electron. 29, 14232 (2018).

  7. 7.

    J. Navas, C. Fernández-Lorenzo, T. Aguilar, R. Alcántara, and J. Martín-Calleja, Phys. Status Solidi Appl. Mater. Sci. 209, 378 (2012).

  8. 8.

    R. Dholam, N. Patel, M. Adami, and A. Miotello, Int. J. Hydrogen Energy 34, 5337 (2009).

  9. 9.

    A.P. Singh, S. Kumari, R. Shrivastav, S. Dass, and V.R. Satsangi, Int. J. Hydrogen Energy 33, 5363 (2008).

  10. 10.

    T. Sreethawong, S. Laehsalee, and S. Chauadej, Int. J. Hydrogen Energy 33, 5947 (2008).

  11. 11.

    B. Zhou, M. Schulz, H.Y. Lin, S.I. Shah, J. Qu, and C.P. Huang, Appl. Catal. B Environ. 92, 41 (2009).

  12. 12.

    P. Joshi, L. Zhang, D. Davoux, Z. Zhu, D. Galipeau, H. Fong, and Q. Qiao, Energy Environ. Sci. 3, 1507 (2010).

  13. 13.

    M. Wang, Y. Wang, and J. Li, Chem. Commun. 47, 11246 (2011).

  14. 14.

    E. Barea, X. Xu, V. González-Pedro, T. Ripollés-Sanchis, F. Fabregat-Santiago, and J. Bisquert, Energy Environ. Sci. 4, 3414 (2011).

  15. 15.

    M. Long, P. Hu, H. Wu, Y. Chen, B. Tan, and W. Cai, J. Mater. Chem. A 3, 5592 (2015).

  16. 16.

    W.W. Lee, C.S. Lu, C.W. Chuang, Y.J. Chen, J.Y. Fu, C.W. Siao, and C.C. Chen, RSC Adv. 5, 23450 (2015).

  17. 17.

    J. Yang, L. Xu, C. Liu, and T. Xie, Appl. Surf. Sci. 319, 265 (2014).

  18. 18.

    S. Sun, W. Wang, L. Zhang, L. Zhou, W. Yin, and M. Shang, Environ. Sci. Technol. 43, 2005 (2009).

  19. 19.

    C. Liu and X.J. Wang, Dalton Trans. 45, 7720 (2016).

  20. 20.

    H. Wang, L. Xu, C. Liu, Y. Lu, Q. Feng, T. Wu, and R. Wang, Nanomaterials 9, 118 (2019).

  21. 21.

    M. Cui, J. Yu, H. Lin, Y. Wu, L. Zhao, and Y. He, Appl. Surf. Sci. 387, 912 (2016).

  22. 22.

    X. Geng, S. Chen, X. Lv, W. Jiang, and T. Wang, Appl. Surf. Sci. 462, 18 (2018).

  23. 23.

    M.J. Jabeen Fatima, C.V. Niveditha, and S. Sindhu, RSC Adv. 5, 78299 (2015).

  24. 24.

    M. Chang, H. Hu, Y. Zhang, D. Chen, L. Wu, and X. Li, Nanomaterials 7, 104 (2017).

  25. 25.

    J.F. Porter, Y.G. Li, and C.K. Chan, J. Mater. Sci. 34, 1523 (1999).

  26. 26.

    J.I. Peña-Flores, A.F. Palomec-Garfias, C. Márquez-Beltrán, E. Sánchez-Mora, E. Gómez-Barojas, and F. Pérez-Rodríguez, Nanoscale Res. Lett. 9, 499 (2014).

  27. 27.

    R. Kamble, S. Mahajan, V. Puri, H. Shinde, and K. Garadkar, Mater. Sci. Res. India 15, 197 (2018).

  28. 28.

    J. Zhang, M. Li, Z. Feng, J. Chen, and C. Li, J. Phys. Chem. B 110, 927 (2006).

  29. 29.

    X. Jiang, Y. Ma, C. Zhao, Y. Chen, M. Cui, J. Yu, Y. Wu, and Y. He, J. Mater. Res. 33, 2385 (2018).

  30. 30.

    C. Liang, C.G. Niu, L. Zhang, X.J. Wen, S.F. Yang, H. Guo, and G.M. Zeng, J. Hazard. Mater. 361, 245 (2019).

  31. 31.

    F.D. Hardcastle and I.E. Wachs, J. Solid State Chem. 97, 319 (1992).

  32. 32.

    A.A. Putri, S. Kato, N. Kishi, and T. Soga, J. Sci. Adv. Mater. Devices 4, 116 (2019).

  33. 33.

    A.A. Putri, S. Kato, N. Kishi, and T. Soga, Appl. Sci. 9, 3342 (2019).

  34. 34.

    X. Liu, R. Yi, N. Zhang, R. Shi, X. Li, and G. Qiu, Chem. Asian J. 3, 732 (2008).

  35. 35.

    H. Cheng, B. Huang, Y. Dai, X. Qin, and X. Zhang, Langmuir 26, 6618 (2010).

  36. 36.

    Z.S. Wang, Y. Cui, K. Hara, Y. Dan-Oh, C. Kasada, and A. Shinpo, Adv. Mater. 19, 1138 (2007).

  37. 37.

    S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch, Sol. Energy Mater. Sol. Cells 90, 1176 (2006).

  38. 38.

    C.S. Chou, M.G. Guo, K.H. Liu, and Y.S. Chen, Appl. Energy 92, 224 (2012).

  39. 39.

    R. Tang, S. Zhou, L. Zhang, and L. Yin, Adv. Funct. Mater. 28, 1706154 (2018).

  40. 40.

    N. Abraham, C. Unni, and D. Philip, J. Mater. Sci.: Mater. Electron. 29, 21002 (2018).

  41. 41.

    H.Y. Ye, W.Q. Liao, C.L. Hu, Y. Zhang, Y.M. You, J.G. Mao, P.F. Li, and R.G. Xiong, Adv. Mater. 28, 2579 (2016).

  42. 42.

    C. Ji, Z. Sun, A. Zeb, S. Liu, J. Zhang, M. Hong, and J. Luo, J. Phys. Chem. Lett. 8, 2012 (2017).

  43. 43.

    A.A. Putri, S. Kato, N. Kishi, and T. Soga, Jpn. J. Appl. Phys. 58, SAAD09 (2019).

  44. 44.

    S.A.M. Samsuri, M.Y.A. Rahman, A.A. Umar, and M.M. Salleh, Ionics (Kiel) 23, 3533 (2017).

Download references

Acknowledgments

A.A.P. would like to thank the financial support from MORA Scholarship, Ministry of Religious Affairs, The Republic of Indonesia for the PhD scholarship (No. 36/Dt.I.IV/4/PP.07/01/2017).

Author information

Correspondence to Anissa A. Putri.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Putri, A.A., Kato, S., Kishi, N. et al. TiO2/Bi5O7I Composite Films for Dye-Sensitized Solar Cells. Journal of Elec Materi 49, 1827–1834 (2020). https://doi.org/10.1007/s11664-019-07868-2

Download citation

Keywords

  • Bi5O7I
  • bismuth oxyiodides
  • composite
  • photovoltaic