Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Efficient Method of Fabricating Polymeric Solar Cells in Multilayered Configuration Using Electrospray

Abstract

Electrospray deposition (ESD) for the fabrication of multilayered (ML) bulk heterojunction polymeric solar cells via direct/inverted configurations was investigated. The active layer heterojunction (P3HT/PCBM) is deposited both in single and multilayered architectures. In ML configuration, the P3HT/PCBM blend film is sandwiched between thin donor (P3HT) and acceptor (PCBM) layers. In ZnO-based inverted solar cells, ZnO film synthesized by sol–gel process was deposited on ITO substrate using spin coatinng. Solar cells were fabricated via ESD and spin coating and the device’s performance parameters were compared. Higher efficiency was obtained in the case of (ML) ESD device (direct structure). Post thermal treatment showed that ESD devices exhibit a power conversion efficiency (PCE) of 1.85% ML and 1.64% SL in direct structure while in the case of inverted structure PCEs of 1.30% ML and 0.82% SL were obtained as compared to 1.64% from the spin coated device at 120°C. The ML ESD devices have shown an overall efficiency enhancement of 13% (direct) and 58% (inverted) over the single layer (SL) ESD devices. The enhanced performance in ML devices is because there is a spatially uninterrupted pathway to the charge carrier transport towards their respective electrodes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    N. Gasparini, L. Lucera, M. Salvador, M. Prosa, G.D. Spyropoulos, P. Kubis, H.J. Egelhaaf, C.J. Brabec, and T. Ameri, Energy Environ. Sci. 10, 885 (2017).

  2. 2.

    C. Winder and N.S. Sariciftci, J. Mater. Chem. 14, 1077 (2004).

  3. 3.

    H. Hoppe and N.S. Sariciftci, J. Mater. Res. Soc. 19, 1924 (2004).

  4. 4.

    M.T. Dang, L. Hirsch, and G. Wantz, Adv. Mater. 23, 3597 (2011).

  5. 5.

    S. Gnes, H. Neugebauer, and N.S. Sariciftci, Chem. Rev. 107, 1324 (2007).

  6. 6.

    Xu Qi, F. Wang, D. Qian, Z. Tan, L. Li, S. Li, X. Tu, G. Sun, X. Hou, J. Hou, and Y. Li, ACS Appl. Mater. Interfaces 5, 6591 (2013).

  7. 7.

    M.P. de Jong, L.J. van Ijzendoom, and M.J.A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000).

  8. 8.

    Y. Sahin, S. Alem, R. de Bettignies, and J.-M. Nunzi, Thin Solid Films 476, 340 (2005).

  9. 9.

    C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S.A. Choulis, and C.J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).

  10. 10.

    M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, and D.S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).

  11. 11.

    G. Li, C.-W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).

  12. 12.

    S.K. Shah, K. Hayat, and K. Ali, Mater. Res. Express 6, 1 (2019).

  13. 13.

    Y. Bai, B. Yang, X. Chen, F. Wang, T. Hayat, A. Alsaedi, and Z. Tan, Front. Chem. 5, 6591 (2018).

  14. 14.

    A.K. Kyaw, X.W. Sun, C.Y. Jiang, D.W. Zhao, G.Q. Lo, and D.L. Kwong, Appl. Phys. Lett. 93, 221107 (2008).

  15. 15.

    Y. Wang, H. Zhu, Z. Shi, F. Wang, B. Zhang, S. Dai, and Z. Tan, J. Mater. Chem. A 5, 2319 (2017).

  16. 16.

    V. Shrotriya, G. Li, Y. Yao, C.W. Chu, and Y. Yang, Appl. Phys. Lett. 88, 073508 (2006).

  17. 17.

    I. Ullah, S.K. Shah, S. Wali, S.A. Khattak, and K. Hayat, Mater. Res. Express 4, 125505 (2017).

  18. 18.

    G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater. 4, 864 (2005).

  19. 19.

    M. Reyes-Reyes, K. Kim, and D.L. Carroll, Appl. Phys. Lett. 87, 083506 (2005).

  20. 20.

    J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, and H. Yan, Nat. Energy 1, 5027 (2016).

  21. 21.

    L.-M. Chen, Z. Hong, W.L. Kwan, C.H. Lu, Y.F. Lai, B. Lei, C.P. Liu, and Y. Yang, ACS Nano 4, 4744 (2010).

  22. 22.

    F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).

  23. 23.

    C.J. Brabec and J.R. Durrant, MRS Bull. 33, 670 (2008).

  24. 24.

    M. Ali, M. Abbas, S.K. Shah, E. Bontempi, P. Colombi, A. Di Cicco, and R. Gunnella, J. Appl. Phys. 110, 054515 (2011).

  25. 25.

    M. Ali, M. Abbas, S.K. Shah, R.J. Tuerhong, A. Generosi, B. Paci, L. Hirsch, and R. Gunnella, Org. Electron. 13, 2130 (2012).

  26. 26.

    S.K. Shah, M. Abbas, M. Ali, L. Hirsch, and R. Gunnella, J. Phys. D Appl. Phys. 47, 045106 (2014).

  27. 27.

    S.K. Shah, R. Gunnella, L. Hirsch, and M. Abbas, J. Thin Solid Films 640, 104 (2017).

  28. 28.

    M. Abbas, M. Ali, S.K. Shah, F.D. Amico, P. Postorino, S. Mangialardo, M. Cestelli Guidi, A. Cricenti, and R. Gunnella, J. Phys. Chem. B 115, 11199 (2011).

  29. 29.

    A. Jaworek, J. Mater. Sci. 42, 266 (2007).

  30. 30.

    M. Ali, M. Abbas, S.K. Shah, E. Bontempi, A. Di Cicco, and R. Gunnella, Eur. Phys. J. Appl. Phys. 62, 30202 (2013).

  31. 31.

    S.K. Shah, J. Khan, I. Ullah, and Y. Khan, AIMS Mater. Sci. 4, 789 (2017).

  32. 32.

    A. Schleife, F. Fuchs, J. Furthmuller, and F. Bechstedt, Phys. Rev. B. 73, 245212 (2006).

  33. 33.

    P.G. Karagiannidis, D. Georgiou, C. Pitsalidis, A. Laskarakis, and S. Logothetidis, Mater. Chem. Phys. 129, 1207 (2011).

  34. 34.

    G. Li, Y. Yao, H. Yang, V. Shrotriya, G. Yang, and Y. Yang, Adv. Funct. Mater. 17, 1636 (2007).

  35. 35.

    H. Hintz, H.J. Egelhaaf, L. Ler, J. Hauch, H. Peisert, and T. Chass, Chem. Mater. 23, 145 (2011).

Download references

Author information

Correspondence to Said Karim Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, S.K., Gunnella, R. Efficient Method of Fabricating Polymeric Solar Cells in Multilayered Configuration Using Electrospray. Journal of Elec Materi 49, 1794–1800 (2020). https://doi.org/10.1007/s11664-019-07866-4

Download citation

Keywords

  • Polymeric solar cells
  • electrospray deposition
  • multilayered films
  • JV characteristics
  • ZnO based Inverted organic solar cells