Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Co-Doped SnO2 Nanocrystals: XPS, Raman, and Magnetic Studies

  • 35 Accesses

Abstract

Even though doping small sized NCs is a challenging task, 2.7 nm sized tin oxide (SnO2) nanocrystals (NCs) are successfully doped with cobalt (Co). Studies are carried out in dilutely Co-doped SnO2 NCs, so as to avoid Co cluster formation and interference due to extrinsic effect. Co2+ ions are substitutionally doped in SnO2 lattice as seen from the d-d transitions in optical absorption spectra. Further x-ray photoelectron spectroscopic measurements also confirm Co2+ ionic state in SnO2 NCs. In view of the known fact that ferromagnetism in NCs arises due to different defects, Raman measurements are carried out. Raman spectra reveal presence of “in-plane” oxygen vacancies, which is also substantiated by photoluminescence spectra. Even though, Co-doping is not profoundly affecting the structure of SnO2 NCs, subtle ferromagnetic ordering observed in un-doped NCs get destroyed in Co-doped NCs. The present work reiterates the importance of Co-Co anti-ferromagnetic interaction and also indirectly supports the conjecture that oxygen vacancies adjacent with Co ions in SnO2 lattice in a necessary condition for realizing ferromagnetic ordering.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    P. Crespo, R. Litrán, T.C. Rojas, M. Multigner, J.M. de la Fuente, J.C. Sánchez-López, M.A. García, A. Hernando, S. Penadés, and A. Fernández, Phys. Rev. Lett. 93, 4 (2004).

  2. 2.

    H. Hori, Y. Yamamoto, T. Iwamoto, T. Miura, T. Teranishi, and M. Miyake, Phys. Rev. B 69, 1 (2004).

  3. 3.

    J.M.D. Coey, Solid State Sci. 7, 660 (2005).

  4. 4.

    A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C.N.R. Rao, Phys. Rev. B Condens. Matter Mater. Phys. 74, 1 (2006).

  5. 5.

    B. Qi, S. Ólafsson, and H.P. Gíslason, Prog. Mater Sci. 90, 45 (2017).

  6. 6.

    K. Yang, R. Wu, L. Shen, Y.P. Feng, Y. Dai, and B. Huang, Phys. Rev. B Condens. Matter Mater. Phys. 81, 125211 (2010).

  7. 7.

    R. Han, H. Yang, D. Wang, X. Du, and Y. Yan, J. Magn. Magn. Mater. 374, 197 (2015).

  8. 8.

    M. Yehia, S.M. Ismail, C. Sno, and M. Zno, J. Electron. Mater. 48, 4170 (2019).

  9. 9.

    V. Bonu, A. Das, A.K. Prasad, N.G. Krishna, S. Dhara, and A.K. Tyagi, Appl. Phys. Lett. 105, 243102 (2014).

  10. 10.

    D. Dutta and D. Bahadur, J. Mater. Chem. 22, 24545 (2012).

  11. 11.

    V.B. Kamble, S.V. Bhat, and A.M. Umarji, J. Appl. Phys. 113, 244307 (2013).

  12. 12.

    S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S. Das Sarma, H.D. Drew, R.L. Greene, and T. Venkatesan, Phys. Rev. Lett. 91, 1 (2003).

  13. 13.

    A. Punnoose, J. Hays, V. Gopal, and V. Shutthanandan, Appl. Phys. Lett. 85, 1559 (2004).

  14. 14.

    K. Ueda, H. Tabata, and T. Kawai, Appl. Phys. Lett. 79, 988 (2001).

  15. 15.

    G.S. Chang, J. Forrest, E.Z. Kurmaev, A.N. Morozovska, M.D. Glinchuk, J.A. McLeod, A. Moewes, T.P. Surkova, and N.H. Hong, Phys. Rev. B Condens. Matter Mater. Phys. 85, 165–319 (2012).

  16. 16.

    M.A. García, M.L. Ruiz-González, A. Quesada, J.L. Costa-Krämer, J.F. Fernández, S.J. Khatib, A. Wennberg, A.C. Caballero, M.S. Martín-González, M. Villegas, F. Briones, J.M. González-Calbet, and A. Hernando, Phys. Rev. Lett. 94, 217206 (2005).

  17. 17.

    M.A. Garcia, J.M. Merino, E.F. Pinel, A. Quesada, J. De La Venta, M.L.R. González, G.R. Castro, P. Crespo, J. Llopis, J.M. González-Calbet, and A. Hernando, Nano Lett. 7, 1489 (2007).

  18. 18.

    D.Y. Inamdar, A.D. Lad, A.K. Pathak, I. Dubenko, N. Ali, and S. Mahamuni, J. Phys. Chem. C 114, 1451 (2010).

  19. 19.

    M.K. Singh, M.C. Mathpal, and A. Agarwal, Chem. Phys. Lett. 536, 87 (2012).

  20. 20.

    A. Kar, S. Kundu, and A. Patra, J. Phys. Chem. C 115, 118 (2011).

  21. 21.

    L.Z. Liu, J.Q. Xu, X.L. Wu, T.H. Li, J.C. Shen, and P.K. Chu, Appl. Phys. Lett. 102, 031916 (2013).

  22. 22.

    S. Doke, K. Sonawane, A. Banerjee, and S. Mahamuni, J. Alloys Compd. 726, 947 (2017).

  23. 23.

    A. Bouaine, N. Brihi, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, and A. Dinia, J. Phys. Chem. C 111, 2924 (2007).

  24. 24.

    N.A. Franco, K.M. Reddy, J. Eixenberger, D.A. Tenne, C.B. Hanna, and A. Punnoose, J. Appl. Phys. 117, 17E515 (2015).

  25. 25.

    V. Gandhi, R. Ganesan, H.H. Abdulrahman Syedahamed, and M. Thaiyan, J. Phys. Chem. C 118, 9717 (2014).

  26. 26.

    W.H. Hirschwald, ACC. Chem. Res. 18, 228 (1985).

  27. 27.

    W.J. Yin, S.H. Wei, M.M. Al-Jassim, and Y. Yan, Appl. Phys. Lett. 99, 142109 (2011).

  28. 28.

    P.S. Peercy and B. Morosin, J. Chem. Phys. 8, 3318 (1973).

  29. 29.

    B. Babu, C. Rama Krishna, C. Venkata Reddy, V. Pushpa Manjari, and R.V.S.S.N. Ravikumar, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 109, 90 (2013).

  30. 30.

    A. Sharma, A.P. Singh, P. Thakur, N.B. Brookes, S. Kumar, C.G. Lee, R.J. Choudhary, K.D. Verma, and R. Kumar, J. Appl. Phys. 107, 093918 (2010).

  31. 31.

    O.J. Ilegbusi and L. Trakhtenberg, J. Mater. Eng. Perform. 22, 911 (2013).

  32. 32.

    T.J. Chuang, C.R. Brundle, and D.W. Rice, Surf. Sci. 59, 413 (1976).

  33. 33.

    M. Fondell, M. Gorgoi, M. Boman, and A. Lindblad, J. Electron. Spectros. Relat. Phenom. 195, 195 (2014).

  34. 34.

    K. Srinivas, M. Vithal, B. Sreedhar, M.M. Raja, and P.V. Reddy, J. Phys. Chem. C 113, 3543 (2009).

  35. 35.

    H. Jiang, X.F. Liu, Z.Y. Zou, Z. Ben Wu, B. He, and R.H. Yu, Appl. Surf. Sci. 258, 236 (2011).

  36. 36.

    Y. Li, W. Qiu, F. Qin, H. Fang, V.G. Hadjiev, D. Litvinov, and J. Bao, J. Phys. Chem. C 120, 4511 (2016).

  37. 37.

    G.M. Dalpian and J.R. Chelikowsky, Phys. Rev. Lett. 96, 226802 (2006).

  38. 38.

    C.M. Liu, X.T. Zu, and W.L. Zhou, J. Phys. Condens. Matter 18, 6001 (2006).

  39. 39.

    H. Wang, Y. Yan, Y.S. Mohammed, X. Du, K. Li, and H. Jin, J. Magn. Magn. Mater. 321, 3114 (2009).

  40. 40.

    B. Babu, C.V. Reddy, J. Shim, R.V.S.S.N. Ravikumar, and J. Park, J. Mater. Sci. Mater. Electron. 27, 5197 (2016).

Download references

Author information

Correspondence to Shailaja Mahamuni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 704 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Malvankar, S., Doke, S., Gahlaut, R. et al. Co-Doped SnO2 Nanocrystals: XPS, Raman, and Magnetic Studies. Journal of Elec Materi 49, 1872–1880 (2020). https://doi.org/10.1007/s11664-019-07865-5

Download citation

Keywords

  • Nanocrystals
  • XPS
  • Raman
  • ferromagnetic ordering
  • oxygen vacancy