Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Processing Temperature on the Morphology and Crystal Structure of Anodic TiO2 Nanotubes

  • 21 Accesses

Abstract

In the present work, we have investigated the influence of temperature on the morphology of anodically produced self-organized titanium oxide nanotubes (TiNTs). TiNTs are synthesized by two-step anodization in ethylene glycol-based electrolytes containing ammonium fluoride and deionized water. Experiments are performed at constant anodization voltage of 50 V for 2 h. An investigation by the SEM images reveals that if the temperature is kept constant during the anodizing experiment, variation in the average tube diameter is significantly reduced. Degree of pore arrangement, pore size and oxide thickness increased with the increase in temperature as observed at a range of electrolyte temperatures fixed between 5°C and 40°C. However, if the temperature is not controlled during the anodization experiment, then due to the exothermic nature of the reactions to the formation of TiNTs, the temperature of the electrolyte continues to increase. This variation in electrolyte bath temperature introduces strong variations in tube diameter (10–160 nm) along the length of the tubes. Current profiles, recorded during the anodization experiments, predict the effect of constant and varying experimental temperatures as well. In both cases, XRD results show the complete anatase crystal structure of nanotubes upon annealing at 450°C. The present work highlights the importance of fixed processing temperature during the anodization experiments in order to develop an ordered array of nanotubes with a uniform tube diameter.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y. Wang, M. Zheng, H. Lu, S. Feng, G. Ji, and J. Cao, Nanoscale Res. Lett. 5, 913 (2010).

  2. 2.

    A. Saedi and M. Ghorbani, Mater. Chem. Phys. 91, 417 (2005).

  3. 3.

    L. Yang, Q. Cai, and Y. Yu, Inorg. Chem. 45, 9616 (2006).

  4. 4.

    H. Masuda and K. Fukuda, Science 268, 1466 (1995).

  5. 5.

    D. Kowalski, D. Kim, and P. Schmuki, Nano Today 8, 235 (2013).

  6. 6.

    T. Ghani, M. Mujahid, M. Mehmood, and Q. Shahzad, IOP Conf. Ser.: Mater. Sci. Eng. 146, 012015 (2016).

  7. 7.

    S. Chen, M. Liao, P. Yang, S. Yan, R. Jin, and X. Zhu, RSC Adv. 6, 84309 (2016).

  8. 8.

    A. Hating, A. Morris, and M. Hu, Materials 5, 1890 (2012).

  9. 9.

    T. Ghani, Z. Ali, M. Mujahid, and M. Mehmood, Int. J. Energy Appl. Technol. 3, 14 (2016).

  10. 10.

    J.M. Macah and P. Schmuki, Electrochim. Acta 52, 1258 (2006).

  11. 11.

    J.M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, Curr. Opin. Solid STM 11, 3 (2007).

  12. 12.

    T. Ghani, M. Mujahid, M. Mehmood, and G. Zhang, J. Saudi Chem. Soc. (2019, in press).

  13. 13.

    M. Erol, T. Dikici, M. Toparli, and E. Celik, J. Alloys Compd. 602, 66 (2014).

  14. 14.

    Z.B. Xie, S. Adams, D.J. Blackwood, and J. Wang, Nanotechnology 19, 405701 (2008).

  15. 15.

    D.G. Li, D.R. Chen, J.D. Wang, and P. Liang, Electrochim. Acta 207, 152 (2016).

  16. 16.

    M. Enachi, M. Stevns, I. Tiginyanu, and V. Ursaki, Mater. Lett. 64, 2155 (2010).

  17. 17.

    J. Wang and Z. LinJ. Phys. Chem. C 10, 113 (2009).

  18. 18.

    V. Prida, E. Manowa, V. Vega, M.H. Velez, P. Aranda, K.R. Pirota, M. Vazquez, and E.R. Hitzk, J. Magn. Magn. Mater. 316, 110 (2007).

  19. 19.

    N. Kilinc, S. Sennik, and Z.Z. Ozturk, Thin Solid Films 520, 953 (2011).

  20. 20.

    C.W. Lai and S. Sreekantan, Int. J. Photoenergy 2012, 904323 (2012).

  21. 21.

    C.J. Lin, Y.H. Yu, S.Y. Chen, and Y.H. Liou, World Acad. Sci. Eng. Technol. 4, 5 (2010).

  22. 22.

    D. Wang, Y. Li, B. Yu, F. Zhou, and W. Liu, Chem. Mater. 21, 1198 (2009).

  23. 23.

    G.D. Sulka, J.K. Kolodziej, A. Brzozka, and M. Jaskula, Electrochim. Acta 104, 526 (2013).

  24. 24.

    J.K. Kolodziej, K. Syrek, A. Pawlik, M. Jarosz, O. Tynkevych, and G.D. Sulka, Appl. Surf. Sci. 396, 1119 (2017).

  25. 25.

    J.M. Macak, S.P. Albu, and P. Schmuki, Phys. Stat. Sol. (RRL) 1, 181 (2007).

  26. 26.

    A. Apollnario, C.T. Sousa, J. Ventura, and L. Andrade, Nanotechnology 25, 4485301 (2014).

  27. 27.

    A. Apollnario, C.T. Sousa, J. Ventura, J.D. Costa, and D.C. Leitao, J. Mater. Chem. A 2, 9067 (2014).

  28. 28.

    H. Sopha, A. Jager, P. Knotek, K. Tesar, M. Jorosova, and J.M. Macak, Electrochim. Acta 190, 744 (2016).

  29. 29.

    S.P. Albu, A. Ghlcov, J.M. Macak, and P. Schmuki, Phys. Stat. Sol. (RRL) 2, R65–R67 (2007).

  30. 30.

    S. Li, G. Zhang, D. Guo, L. Yu, and W. Zhang, J. Phys. Chem. C 113, 12759 (2009).

  31. 31.

    T. Ghani, M. Mujahid, M. Mehmood, and G. Zhang, J. Porous Mat. 26, 193 (2019).

  32. 32.

    J. Chen, J. Lin, and X. Chen, J. Nanomaterials 2010, 753253 (2010).

  33. 33.

    S.P. Albu, D. Kim, and P. Schmuki, Angew. Chem. Int. Ed. 47, 1916 (2008).

  34. 34.

    C. Li, L. Wu, S. Zhao, L. Jiang, Y. Yang, K. Zhang, and X. Zhu, Chem. Phys. Lett. 722, 6 (2019).

  35. 35.

    G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, and C.A. Grimes, Nanoletters 5, 191 (2005).

Download references

Acknowledgments

This research work was supported by the funds provided by National University of Sciences and Technology (Research grant), Islamabad, Pakistan.

Author information

Correspondence to Tayyaba Ghani.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghani, T., Mujahid, M., Mehmood, M. et al. Effect of Processing Temperature on the Morphology and Crystal Structure of Anodic TiO2 Nanotubes. Journal of Elec Materi 49, 1881–1888 (2020). https://doi.org/10.1007/s11664-019-07864-6

Download citation

Keywords

  • Electrolyte temperature
  • TiO2 nanotubes
  • two-step anodization
  • microstructure