Microstructures and Mechanical Properties of Sn-58 wt.% Bi Solder with Ag-Decorated Multiwalled Carbon Nanotubes Under 85°C/85% Relative Humidity Environmental Conditions

  • Kyung Deuk Min
  • Choong-Jae Lee
  • Hyun-Joon Park
  • Seung-Boo JungEmail author


The mechanical properties of Sn-58 wt.% Bi solder with different amounts (0 wt.%, 0.05 wt.%, 0.1 wt.%, and 0.2 wt.%) of Ag-decorated multiwalled carbon nanotube (MWCNT) nanoparticles under 85°C/85% relative humidity environmental conditions for 0 h to 1000 h was investigated. Sn-58 wt.% Bi solder is a lead-free option for use in solder joints due to its low melting temperature and good creep resistance; however, it is brittle and has reliability issues. Ag-decorated MWCNT nanoparticles were used to improve these weaknesses of Sn-58 wt.% Bi solder. A ball shear test was performed using a bond tester to investigate the solder's mechanical properties. The microstructures of the solder joints and fracture mode were analyzed using a field-emission scanning electron microscope. The results demonstrated that the addition of Ag-decorated MWCNT nanoparticles to Sn-58 wt.% Bi increased the shear strength and fracture energy by approximately 15% and 14%, respectively, compared with Sn-58 wt.% Bi alone. After a high-temperature, high-humidity test for 1000 h, the shear strength and fracture energy of Sn-58 wt.% Bi with 0.1 wt.% Ag-decorated MWCNT nanoparticles were 13% and 21% greater than for Sn-58 wt.% Bi alone.


Solder Sn-58Bi Ag-decorated MWCNT nanoparticles high-temperature high-humidity test grain refinement interface 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2019R1A6A1A03033215). This work was supported by “Human Resources Program in Energy Technology” of the Korea Institute of Energy Technology Evaluation and Planning, granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No. 20174030201800).


  1. 1.
    J.W. Yoon, S.W. Kim, and S.B. Jung, J. Alloys. Compd. 391, 82 (2005).CrossRefGoogle Scholar
  2. 2.
    C.M.L. Wu, D.Q. Yu, C.M.T. Law, and L. Wang, Mater. Sci. Eng., R 44, 1 (2004).CrossRefGoogle Scholar
  3. 3.
    H. Ma, J.C. Suhling, Y. Zhang, P. Lall, and M.J. Bozack, in 57th Electronic Components & Technology Conference Proceedings (2007), pp. 653–668.Google Scholar
  4. 4.
    D.Q. Yu, C.M.L. Wu, D.P. He, N. Zhao, L. Wang, and J.K.L. Lai, J. Mater. Res. 20, 2205 (2005).CrossRefGoogle Scholar
  5. 5.
    H.W. Miao and J.G. Duh, Mater. Chem. Phys. 71, 255 (2001).CrossRefGoogle Scholar
  6. 6.
    F. Hua, Z. Mei, and J. Glazer, in 48th Electronic Components & Technology Conference Proceedings (1998), pp. 277–283.Google Scholar
  7. 7.
    W.R. Myung, Y. Kim, and S.B. Jung, J. Alloys. Compd. 615, S411 (2014).CrossRefGoogle Scholar
  8. 8.
    X. Hu, Y. Li, and Z. Min, J. Mater. Sci.: Mater. Electron. 24, 2027 (2013).Google Scholar
  9. 9.
    L. Yang, W. Zhou, Y. Ma, X. Li, Y. Liang, W. Cui, and P. Wu, Mater. Sci. Eng., A 667, 368 (2016).CrossRefGoogle Scholar
  10. 10.
    T.H. Chuang and H.F. Wu, J. Electron. Mater. 40, 71 (2011).CrossRefGoogle Scholar
  11. 11.
    S. Xu, Y.C. Chan, K. Zhang, and K.C. Yung, J. Alloys. Compd. 595, 92 (2014).CrossRefGoogle Scholar
  12. 12.
    S.M.L. Nai, J. Wei, and M. Gupta, J. Alloys. Compd. 473, 100 (2009).CrossRefGoogle Scholar
  13. 13.
    Y.D. Han, H.Y. Jing, S.M.L. Nai, L.Y. Xu, C.M. Tan, and J. Wei, Intermetallics 31, 72 (2012).CrossRefGoogle Scholar
  14. 14.
    C.J. Lee, J.J. Moon, K.H. Jung, and S.B. Jung, in 67th Electronic Components & Technology Conference Proceedings (2017), pp. 2225–2230.Google Scholar
  15. 15.
    S. Chantaramanee, S. Wisutmethangoon, L. Sikong, and T. Plookphol, J. Mater. Sci.: Mater. Electron. 24, 3707 (2013).Google Scholar
  16. 16.
    K.S. Kim, B.G. Park, H. Kim, H.S. Lee, and S.B. Jung, Curr. Appl. Phys. 15, S36 (2015).CrossRefGoogle Scholar
  17. 17.
    J.W. Yoon, B.I. Noh, and S.B. Jung, J. Electron. Mater. 40, 1950 (2011).CrossRefGoogle Scholar
  18. 18.
    Y. Wan, S. Li, X. Hu, Y. Qiu, T. Xu, Y. Li, and X. Jiang, Microelectron. Reliab. 86, 27 (2018).CrossRefGoogle Scholar
  19. 19.
    Y. Li and Y.C. Chan, J. Alloys. Compd. 645, 566 (2015).CrossRefGoogle Scholar
  20. 20.
    Y. Feng and H. Yuan, J. Mater. Sci. 39, 3241 (2004).CrossRefGoogle Scholar
  21. 21.
    K.M. Kumar, V. Kripesh, and A.A.O. Tay, J. Alloys. Compd. 450, 229 (2008).CrossRefGoogle Scholar
  22. 22.
    K.Y. Kim, W.R. Myung, H. Jeong, Y.G. Sung, and S.B. Jung, J. Nanosci. Nanotechnol. 18, 6162 (2018).CrossRefGoogle Scholar
  23. 23.
    D.Q. Yu, J. Zhao, and L. Wang, J. Alloys. Compd. 376, 170 (2004).CrossRefGoogle Scholar
  24. 24.
    P. He, X.C. Lü, T.S. Lin, H.X. Li, J. An, X. Ma, J.C. Feng, Y. Zhang, Q. Li, and Y.Y. Qian, Trans. Nonferr. Met. Soc. China 22, s692 (2012).CrossRefGoogle Scholar
  25. 25.
    S.M.L. Nai, J. Wei, and M. Gupta, J. Electron. Mater. 35, 1518 (2006).CrossRefGoogle Scholar
  26. 26.
    J. Kim, W.R. Myung, and S.B. Jung, J. Electron. Mater. 45, 5895 (2016).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Kyung Deuk Min
    • 1
  • Choong-Jae Lee
    • 1
  • Hyun-Joon Park
    • 1
  • Seung-Boo Jung
    • 1
    Email author
  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonSouth Korea

Personalised recommendations