Spray Deposition of n-type Cobalt-Doped CuO Thin Films: Influence of Cobalt Doping on Structural, Morphological, Electrical, and Optical Properties

  • Hassan Zare AslEmail author
  • Seyed Mohammad Rozati


The effects of cobalt (Co)-doping (0 at%, 2 at%, 4 at%, 6 at%, and 10 at%) on the structural, morphological, electrical, and optical characteristics of spray-deposited nanostructured copper oxide (CuO) thin films were investigated. X-ray diffraction patterns revealed that the crystallite size is subject to a constant reduction with an increase in the doping concentration. Based on field-emission scanning electron microscopy images, no change was observed for the grain shapes; however, the grain size decreased with an increase in the doping concentration. Furthermore, doping Co led to a conversion from a fairly weak p-type conductivity for the undoped CuO thin film (3.42 × 10−4 Ω cm) to a considerable n-type conductivity for the 10 at% Co-doped CuO (CuO:Co) film (4.20 × 10−1 Ω cm). Although the mobility of the resulting films decreased with Co doping, it seems that the significant enlargement in free electron carrier concentration is responsible for conductivity transition and improvement. Finally, the bandgap values were estimated using experimental data of transmittance and reflectance.


Co-doped CuO thin film spray pyrolysis doping concentration physical properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    A. Bhaumik, A. Haque, P. Karnati, M.F.N. Taufique, R. Patel, and K. Ghosh, Thin Solid Films 572, 126 (2014).CrossRefGoogle Scholar
  2. 2.
    Y. Chaudhary, Int. J. Hydrog. Energy 29, 131 (2004).CrossRefGoogle Scholar
  3. 3.
    K.C. Sanal, L.S. Vikas, and M.K. Jayaraj, Appl. Surf. Sci. 297, 153 (2014).CrossRefGoogle Scholar
  4. 4.
    B.S. Kang, S.-E. Ahn, M.-J. Lee, G. Stefanovich, K.H. Kim, W.X. Xianyu, C.B. Lee, Y. Park, I.G. Baek, and B.H. Park, Adv. Mater. 20, 3066 (2008).CrossRefGoogle Scholar
  5. 5.
    H. Deng, H.-R. Li, F. Wang, C.-X. Yuan, S. Liu, P. Wang, L.-Z. Xie, Y.-Z. Sun, and F.-Z. Chang, J. Mater. Sci. Mater. Electron. 27, 6766 (2016).CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, K. Zhang, D. Xu, G. Yang, H. Huang, F. Nie, C. Liu, and S. Yang, Prog. Mater Sci. 60, 208 (2014).CrossRefGoogle Scholar
  7. 7.
    D.M. Jundale, P.B. Joshi, S. Sen, and V.B. Patil, J. Mater. Sci. Mater. Electron. 23, 1492 (2012).CrossRefGoogle Scholar
  8. 8.
    C.-C. Hsu, C.-H. Wu, and S.-Y. Wang, J. Alloys Compd. 663, 262 (2016).CrossRefGoogle Scholar
  9. 9.
    B. Yan, Y. Wang, T. Jiang, and X. Wu, J. Mater. Sci. Mater. Electron. 27, 5389 (2016).CrossRefGoogle Scholar
  10. 10.
    A.D. Faisal and W.K. Khalef, J. Mater. Sci. Mater. Electron. 28, 18903 (2017).CrossRefGoogle Scholar
  11. 11.
    J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado, and M. Sánchez, Thin Solid Films 474, 133 (2005).CrossRefGoogle Scholar
  12. 12.
    V. Saravanan, P. Shankar, G.K. Mani, and J.B.B. Rayappan, J. Anal. Appl. Pyrolysis 111, 272 (2015).CrossRefGoogle Scholar
  13. 13.
    F.A. Akgul, G. Akgul, N. Yildirim, H.E. Unalan, and R. Turan, Mater. Chem. Phys. 147, 987 (2014).CrossRefGoogle Scholar
  14. 14.
    R.J. Deokate, A.V. Moholkar, G.L. Agawane, S.M. Pawar, J.H. Kim, and K.Y. Rajpure, Appl. Surf. Sci. 256, 3522 (2010).CrossRefGoogle Scholar
  15. 15.
    R. Shabu, A. Moses Ezhil Raj, C. Sanjeeviraja, and C. Ravidhas, Mater Res. Bull. 68, 1 (2015).CrossRefGoogle Scholar
  16. 16.
    H.Z. Asl and S.M. Rozati, J. Electron. Mater. 46, 5020 (2017).CrossRefGoogle Scholar
  17. 17.
    I. Singh and R.K. Bedi, Appl. Surf. Sci. 257, 7592 (2011).CrossRefGoogle Scholar
  18. 18.
    S. Baturay, A. Tombak, D. Kaya, Y.S. Ocak, M. Tokus, M. Aydemir, and T. Kilicoglu, J. Sol-Gel. Sci. Technol. 78, 422 (2016).CrossRefGoogle Scholar
  19. 19.
    S. Masudy-Panah, K. Radhakrishnan, H.R. Tan, R. Yi, T.I. Wong, and G.K. Dalapati, Sol. Energy Mater. Sol. Cells 140, 266 (2015).CrossRefGoogle Scholar
  20. 20.
    X.-M. Cai, X.-Q. Su, F. Ye, H. Wang, X.-Q. Tian, D.-P. Zhang, P. Fan, J.-T. Luo, Z.-H. Zheng, G.-X. Liang, and V.A.L. Roy, Appl. Phys. Lett. 107, 083901 (2015).CrossRefGoogle Scholar
  21. 21.
    M. Xu, X. Liu, W. Xu, H. Xu, X. Hao, and X. Feng, J. Alloys Compd. 769, 484 (2018).CrossRefGoogle Scholar
  22. 22.
    F. Bayansal, T. Taşköprü, B. şahin, and H.A. Çetinkara, Metall. Mater. Trans. A 45, 3670 (2014).CrossRefGoogle Scholar
  23. 23.
    A.M. El Sayed and M. Shaban, Spectrochim Acta Part A 149, 638 (2015).CrossRefGoogle Scholar
  24. 24.
    W.Z. Tawfik, Z.S. Khalifa, M.S. Abdel-wahab, and A.H. Hammad, J. Mater. Sci. Mater. Electron. 30, 1275 (2018).CrossRefGoogle Scholar
  25. 25.
    M. Eslamian, Coatings 4, 60 (2014).CrossRefGoogle Scholar
  26. 26.
    B.D. Cullity, Elements of X-ray Diffraction, 1st ed. (Boston: Addision-Wesley, 1956), pp. 96–102.Google Scholar
  27. 27.
    W.Z. Tawfik, A.A. Farghali, A. Moneim, N.G. Imam, and S.I. El-Dek, Nanotechnology 29, 215709 (2018).CrossRefGoogle Scholar
  28. 28.
    C. Abdelmounaïm, Z. Amara, A. Maha, and D. Mustapha, Mater. Sci. Semicond. Process. 43, 214 (2016).CrossRefGoogle Scholar
  29. 29.
    Y. Akaltun, Thin Solid Films 594, 30 (2015).CrossRefGoogle Scholar
  30. 30.
    V. Dhanasekaran, T. Mahalingam, and V. Ganesan, Microsc. Res. Tech. 76, 58 (2013).CrossRefGoogle Scholar
  31. 31.
    J. Morales, L. Sánchez, F. Martín, J.R. Ramos-Barrado, and M. Sánchez, Electrochim. Acta 49, 4589 (2004).CrossRefGoogle Scholar
  32. 32.
    Y. Kajikawa, J. Appl. Phys. 114, 053707 (2013).CrossRefGoogle Scholar
  33. 33.
    D. Gopalakrishna, K. Vijayalakshmi, and C. Ravidhas, Ceram. Int. 39, 7685 (2013).CrossRefGoogle Scholar
  34. 34.
    D. Wu, Q. Zhang, and M. Tao, Phys. Rev. B 73, 235206 (2006).CrossRefGoogle Scholar
  35. 35.
    R. Shannon, Acta Crystallogr. Sect. A Found. Crystallogr. 32, 751 (1976).Google Scholar
  36. 36.
    H. Behzad, F.E. Ghodsi, and H. Karaağaç, Ionics 23, 2429 (2017).CrossRefGoogle Scholar
  37. 37.
    A.S. Hassanien and A.A. Akl, Superlattices Microstruct. 89, 153 (2016).CrossRefGoogle Scholar
  38. 38.
    J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).CrossRefGoogle Scholar
  39. 39.
    H.Z. Asl and S.M. Rozati, J. Mater. Sci. Mater. Electron. 29, 4365 (2018).CrossRefGoogle Scholar
  40. 40.
    M.M.A. Ahmed, W.Z. Tawfik, M.A.K. Elfayoumi, M. Abdel-Hafiez, and S.I. El-Dek, J. Alloys Compd. 791, 586 (2019).CrossRefGoogle Scholar
  41. 41.
    H.Z. Asl and S.M. Rozati, J. Electron. Mater. 47, 3568 (2018).CrossRefGoogle Scholar
  42. 42.
    H. Behzad and F.E. Ghodsi, J. Mater. Sci. Mater. Electron. 27, 6096 (2016).CrossRefGoogle Scholar
  43. 43.
    J. Melsheimer and D. Ziegler, Thin Solid Films 129, 35 (1985).CrossRefGoogle Scholar
  44. 44.
    L. Chabane, N. Zebbar, M. Kechouane, M.S. Aida, and M. Trari, Thin Solid Films 605, 57 (2016).CrossRefGoogle Scholar
  45. 45.
    K.A. Aly, A.M. Abd Elnaeim, M.A.M. Uosif, and O. Abdel-Rahim, Physica B 406, 4227 (2011).CrossRefGoogle Scholar
  46. 46.
    M. Lamri Zeggar, L. Chabane, M.S. Aida, N. Attaf, and N. Zebbar, Mater. Sci. Semicond. Process. 30, 645 (2015).CrossRefGoogle Scholar
  47. 47.
    A.S. Hassanien and A.A. Akl, J. Alloys Compd. 648, 280 (2015).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of PhysicsBehbahan Khatam Alanbia University of TechnologyBehbahanIran
  2. 2.Department of PhysicsUniversity of GuilanRashtIran

Personalised recommendations