Advertisement

Spectral Change of E Band Emission in a GaAs:N δ-Doped Superlattice Due to Below-Gap Excitation and Its Discrimination from Thermal Activation

  • Md. Dulal HaqueEmail author
  • Norihiko Kamata
  • A. Z. M. Touhidul Islam
  • Shuhei Yagi
  • Hiroyuki Yaguchi
Article
  • 11 Downloads

Abstract

In this study, we examined the E band luminescence of a GaAs:N δ-doped superlattice (SL) grown by metal organic vapor phase epitaxy with 0.15% nitrogen (N) using two-wavelength excited photoluminescence. It was observed that the photoluminescence (PL) intensity of the low-energy peak (P2) at 1.38 eV of the E band was quenched larger compared to the high-energy peak (P1) at 1.41 eV. This was due to the superposition of below-gap excitation (BGE) light of energy 0.95 eV over the above-gap excitation light of energy 1.45 eV on the SL structure at a fixed temperature of 12 K. On the other hand, at higher temperatures, the PL intensity of the high-energy peak P1 was quenched higher compared to the low-energy peak P2 without any addition of the BGE light. We interpreted the experimental results by considering the carrier recombination (CR) model and concluded that the observed PL spectral and intensity change of the E band emission due to BGE does not result from the thermal activation, but from the optical excitation among the E band, conduction band, and CR levels in GaAs:N δ-doped structure. We concluded that to achieve high-efficiency intermediate band-type solar cells, it is essential to understand the CR mechanism through CR levels by determining their origin and eliminating them from the material.

Keywords

GaAs:Nδ-doped superlattice photoluminescence carrier recombination below-gap excitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to Prof. Kentaro Onabe for providing samples for the experimental study. This research was funded by JSPS KAKENHI Grant Numbers JP15H05733 and JP16703390.

References

  1. 1.
    A. Luque and A. Marti, Phys. Rev. Lett. 78, 5014 (1997).CrossRefGoogle Scholar
  2. 2.
    A. Luque and A. Marti, Adv. Mater. 22, 160 (2010).CrossRefGoogle Scholar
  3. 3.
    S. Yagi, S. Noguchi, Y. Hijikata, S. Kuboya, K. Onabe, Y. Okada, and H. Yaguchi, Appl. Phys. Express 7, 102301 (2014).CrossRefGoogle Scholar
  4. 4.
    K. Osada, T. Suzuki, S. Yagi, S. Naitoh, Y. Shoji, Y. Hijikata, Y. Okada, and H. Yaguchi, Jpn. J. Appl. Phys. 54, 08KA04 (2015).CrossRefGoogle Scholar
  5. 5.
    F. Ishikawa, S. Furuse, K. Sumiya, A. Kinoshita, and M. Morifuji, J. Appl. Phys. 111, 053512 (2012).CrossRefGoogle Scholar
  6. 6.
    P. Krispin, V. Gambin, J.S. Harris, and K.H. Ploog, J. Appl. Phys. 93, 6095 (2003).CrossRefGoogle Scholar
  7. 7.
    B. Bouzazi, N. Kojima, Y. Ohshita, and M. Yamaguchi, AIP Conf. Proc. 1556, 30 (2013).CrossRefGoogle Scholar
  8. 8.
    B. Bouzazi, H. Suzuki, N. Kojima, Y. Ohshita, and M. Yamaguchi, Jpn. J. Appl. Phys. Part 1 49, 051001 (2010).CrossRefGoogle Scholar
  9. 9.
    M. Shafi, R.H. Mari, M. Henini, D. Taylor, and M. Hopkinson, Phys. Status Solidi C 6, 2652 (2009).CrossRefGoogle Scholar
  10. 10.
    M. Ramsteiner, D.S. Jiang, J.S. Harris, and K.H. Ploog, Appl. Phys. Lett. 84, 1859 (2004).CrossRefGoogle Scholar
  11. 11.
    H.G. Grimmeis and B. Monemar, Phys. Status Solidi A 19, 505 (1973).CrossRefGoogle Scholar
  12. 12.
    B. Monemar and L. Samuelson, Phys. Rev. 18, 809 (1978).CrossRefGoogle Scholar
  13. 13.
    M. Tajima, Proceedings of International Conference on Defects in Semiconductors, edited by L.C. Kimerling and J.M. Parsey (AIME, Warrendale), 997 (1984).Google Scholar
  14. 14.
    W. Shockley and W.T. Read, Phys. Rev. 87, 835 (1952).CrossRefGoogle Scholar
  15. 15.
    E. Kanoh, K. Hoshino, N. Kamata, K. Yamada, M. Nishioka, and Y. Arakawa, J. Lumin. 63, 235 (1995).CrossRefGoogle Scholar
  16. 16.
    N. Kamata, J.M.Z. Ocampo, K. Hoshino, K. Yamada, M. Nishioka, and Y. Arakawa, Recent Res. Dev. Quantum Electron. 1, 123 (1999).Google Scholar
  17. 17.
    N. Kamata, K. Hoshino, T. Uchida, K. Yamada, M. Nishioka, and Y. Arakawa, Superlattices Microstruct. 22, 521 (1997).CrossRefGoogle Scholar
  18. 18.
    K. Hoshino, T. Uchida, N. Kamata, K. Yamada, M. Nishioka, and Y. Arakawa, Jpn. J. Appl. Phys. 37, 3210 (1998).CrossRefGoogle Scholar
  19. 19.
    J.M.Z. Ocampo, N. Kamata, K. Hoshino, K. Endo, K. Yamada, M. Nishioka, T. Someya, and Y. Arakawa, J. Lumin. 87–89, 363 (2000).CrossRefGoogle Scholar
  20. 20.
    J.M.Z. Ocampo, H. Klausing, O. Semchinova, J. Stemmer, M. Hirasawa, N. Kamata, and K. Yamada, Phys. Status Solidi A 183, 189 (2001).CrossRefGoogle Scholar
  21. 21.
    N. Kamata, J.M.Z. Ocampo, W. Okamoto, K. Hoshino, T. Someya, Y. Arakawa, and K. Yamada, Mater. Sci. Eng. B 91–92, 290 (2002).CrossRefGoogle Scholar
  22. 22.
    A.Z.M.T. Islam, T. Hanaoka, K. Onabe, S. Yagi, N. Kamata, and H. Yaguchi, Appl. Phys. Express 6, 092401 (2013).CrossRefGoogle Scholar
  23. 23.
    M.D. Haque, N. Kamata, T. Fukuda, Z. Honda, S. Yagi, H. Yaguchi, and Y. Okada, J. Appl. Phys. 123, 161426 (2018).CrossRefGoogle Scholar
  24. 24.
    M.D. Haque, N. Kamata, A.Z.M. Touhidul Islam, Z. Honda, S. Yagi, and H. Yaguchi, Opt. Mater. 89, 521 (2019).CrossRefGoogle Scholar
  25. 25.
    I.A. Buyanova, W.M. Chen, G. Pozina, J.P. Bergman, B. Monemar, H.P. Xin, and C.W. Tu, Appl. Phys. Letts. 75, 501 (1999).CrossRefGoogle Scholar
  26. 26.
    N. Kamata, M. Suetsugu, M.D. Haque, S. Yagi, H. Yaguchi, F. Karlsson, and P.O. Holtz, Phys. Status Solidi B 254, 1600566 (2017).CrossRefGoogle Scholar
  27. 27.
    C.-M. Lee, S.-H. Choi, C.-S. Kim, S.-K. Noh, J.I. Lee, K.-Y. Lim, and I.K. Han, J. Kor. Phys. Soc. 45, L243 (2004).Google Scholar
  28. 28.
    M.D. Haque, N. Kamata, S.-I. Sato, and S.M. Hubbard, Jpn. J. Appl. Phys. 57, 092302 (2018).CrossRefGoogle Scholar
  29. 29.
    A.Z.M.T. Islam, N. Murakoshi, T. Fukuda, H. Hirayama, and N. Kamata, Phys. Status Solidi C 11, 832 (2014).CrossRefGoogle Scholar
  30. 30.
    L. Gelczuk, R. Kudrawiec, and M. Henini, J. Appl. Phys. 116, 013705 (2014).CrossRefGoogle Scholar
  31. 31.
    Ł. Gelczuk, M.D. Browska-Szata, B. Sciana, D. Pucickii, D. Radziewici, K. Kopalko, and M. Tlaczla, Mater. Sci. Pol. 34, 726 (2016).CrossRefGoogle Scholar
  32. 32.
    R. Kudrawiec, M. Latkowska, M. Welna, J. Misewicz, M. Shafi, R.H. Mari, M. Henini, and W. Walukiewicz, Appl. Phys. Lett. 101, 082109 (2012).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Md. Dulal Haque
    • 1
    Email author
  • Norihiko Kamata
    • 2
  • A. Z. M. Touhidul Islam
    • 3
  • Shuhei Yagi
    • 2
  • Hiroyuki Yaguchi
    • 2
  1. 1.Department of Electronics and Communication EngineeringHajee Mohammad Danesh Science and Technology UniversityDinajpurBangladesh
  2. 2.Graduate School of Science and EngineeringSaitama UniversitySaitamaJapan
  3. 3.Department of Electrical and Electronic EngineeringUniversity of RajshahiRajshahiBangladesh

Personalised recommendations