A Comparative Study on the Moisture Response of Nanoporous γ-Alumina with Parallel Plate and Micro-Interdigital Electrodes

  • Preeti Lata Mahapatra
  • Partha Pratim Mondal
  • Sagnik Das
  • Debdulal SahaEmail author


Nanoporous γ-alumina thick films were prepared from its aqueous sol which in turn was prepared from an organometallic precursor. Ethylacetoacetate was added into the sol as a crack suppressing agent. The sensing behavior of the said film was measured in capacitive mode both in percentage relative humidity (%RH) level as well as parts per million by volume (ppmv) level moisture present in the gas phase. Two different electrode designs viz. parallel plate [parallel electrode configuration (PEC)] and micro-interdigital (inter-digital configuration) were employed for the sensing study. PEC shows superior sensing behavior over the interdigital electrode. The capacitance of the sensor with PE and ID configuration increase from ∼ 17 pF to ∼ 153 pF and ∼ 15 pF to ∼ 24 pF, respectively, as the moisture content increased from 2 ppm to 100 ppm. Further, the capacitance of the sensor with PE and ID configuration increased from ∼ 151 pF to ∼ 963 pF and ∼ 97 pF to ∼ 521 pF, respectively, as moisture content increased from 5% to 60%RH. Schematic and equivalent circuit diagrams for both electrode designs were invoked to explain the achieved superior sensitivity. In addition, the fabricated γ-alumina thick film based capacitive moisture sensor in parallel plate electrode geometry demonstrates low hysteresis (∼ 10 pF at 60%RH and ∼ 0.8 pF at 50 ppmv moisture content), appreciable repeatability over 15 cycles, prolonged stability for 12 months, robustness, drift-free measurement, impressive resolution, usability at high temperature, magnetic field, radiative and corrosive/toxic gas environment.

Graphic abstract


Nanoporous γ-alumina interdigital electrode parallel plate electrode thick films capacitive moisture sensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are thankful to (DST–SERB, Sanction Letter No. EEQ/2016/000190, GAP 0361) for financial support. The authors are also thankful to the director of the CSIR-Central Glass and Ceramic Research Institute, Kolkata, for rendering all sorts of cooperation for conducting the research work.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    D.D.L. Chung, Appl. Energy 231, 89 (2018).CrossRefGoogle Scholar
  2. 2.
    T. Sato, G. Masuda, and K. Takagi, Electrochim. Acta 49, 3603 (2004).CrossRefGoogle Scholar
  3. 3.
    A.B. McEwen, H.L. Ngo, K. Le Compte, and J.L. Goldman, J. Electrochem. Soc. 146, 1687 (1999).CrossRefGoogle Scholar
  4. 4.
    D. Dimos and C.H. Mueller, Annu. Rev. Mater. Sci. 28, 397 (1998).CrossRefGoogle Scholar
  5. 5.
    J. Lu, K.-S. Moon, B.-K. Kim, and C.P. Wong, Polymer 48, 1510 (2007).CrossRefGoogle Scholar
  6. 6.
    U. Weber, G. Greuel, U. Boettger, S. Weber, D. Hennings, and R. Waser, J. Am. Ceram. Soc. 84, 759 (2001).CrossRefGoogle Scholar
  7. 7.
    J. Lu, K.-S. Moon, J. Xu, and C.P. Wong, J. Mater. Chem. 16, 1543 (2006).CrossRefGoogle Scholar
  8. 8.
    J. Lu and C.P. Wong, IEEE Trans. Dielectr. Electr. Insul. 15, 1322 (2008).CrossRefGoogle Scholar
  9. 9.
    “Ceramic Capacitor Aging Made Simple”. Johanson Dielectrics. 2012-05-21. Retrieved 17 March 2013.Google Scholar
  10. 10.
    “The Effect of Reversal on Capacitor Life” (PDF). Engineering Bulletin 96-004. Sorrento Electronics. November 2003. Archived from the original (PDF) on 2014-07-14. Retrieved 17 March 2013.Google Scholar
  11. 11.
    C.J. Kaiser. The Capacitor Handbook. Springer, Berlin; 2012. ISBN 978-94-011-8090-0.Google Scholar
  12. 12.
    Electronics. McGraw-Hill 1960 p. 90.Google Scholar
  13. 13.
    W. Duff (1908–1916). A Text-Book of Physics (4th ed.). Philadelphia: P. Blakiston’s Son & Co. p. 361. Retrieved 1 Dec 2016.Google Scholar
  14. 14.
    J. Ho, T.R. Jow, and S. Boggs, IEEE Electr. Insul. Mag. 26, 20 (2010). Scholar
  15. 15.
    A brief history of supercapacitors AUTUMN 2007 Batteries & Energy Storage Technology Archived 06 Jan 2014-at the Wayback Machine.Google Scholar
  16. 16.
    Capacitor charging and discharging”. All About Circuits. Retrieved 19 Feb 2009.Google Scholar
  17. 17.
    J. Yang, J. Yu, and Y. Huang, J. Eur. Ceram. Soc. 31, 2569 (2011).CrossRefGoogle Scholar
  18. 18.
    N. Yamazoe and Y. Shimizu, Sens. Actuators 10, 379 (1986).CrossRefGoogle Scholar
  19. 19.
    E. Traversa, Sens. Actuators B 23, 135 (1995).CrossRefGoogle Scholar
  20. 20.
    A. Te’telin, C. Pellet, C. Laville, and G. N’Kaoua, Sens. Actuators B 91, 211 (2003).CrossRefGoogle Scholar
  21. 21.
    Z. Chen and C. Lu, Sens. Lett. 3, 274 (2005).CrossRefGoogle Scholar
  22. 22.
    T. Islam, L. Kumar, and S.A. Khan, Sens. Actuators B Chem. 173, 377 (2012).CrossRefGoogle Scholar
  23. 23.
    D. Saha and S. Das, Mater. Today Proc. 5, 9817 (2018).CrossRefGoogle Scholar
  24. 24.
    L. Kumar, D.D. Saha, S.A. Khan, K. Sengupta, and T. Islam, IEEE Sens. J. 12, 1625 (2012).CrossRefGoogle Scholar
  25. 25.
    Trace Moisture Measurement with Aluminum Oxide Sensor in X-STREAM Process Gas Analyzers, Application Note, Emerson Process Management, Rosemount Analytical.Google Scholar
  26. 26.
    N. Li, H. Zhu, W. Wang, and Y. Gong, AIP Adv. 4, 027119 (2014).CrossRefGoogle Scholar
  27. 27.
    J. Bay, O. Hansen, and S. Bouwstra, Sens. Actuators A 53, 232 (1966).Google Scholar
  28. 28.
    M. Yang and M. Thompson, Anal. Chim. Acta 269, 167 (1992).CrossRefGoogle Scholar
  29. 29.
    Bo Mattiasson and Martin Hedström, TrAC Trends Anal. Chem. 79, 233 (2016).CrossRefGoogle Scholar
  30. 30.
    T.J. Plum, V. Saxena, R.J. Jessing, Design of a MEMS capacitive chemical sensor based on polymer swelling, in 2006 IEEE Workshop on Microelectronics and Electron Devices, 2006. WMED ‘06.Google Scholar
  31. 31.
    L.J. Fernández, R.J. Wiegerink, J. Flokstra, J. Sesé, H.V. Jansen, and M. Elwenspoek, J. Micromech. Microeng. 16, 1099 (2006).CrossRefGoogle Scholar
  32. 32.
    R. Jachowicz and S.D. Senturia, Sens. Actuators 2, 171 (1981).CrossRefGoogle Scholar
  33. 33.
    B.E. Yoldas, J. Mater. Sci. 10, 1856 (1975).CrossRefGoogle Scholar
  34. 34.
    F.H. Babaei and S. Rahbarpour, Sens. Actuators B 191, 572 (2014).CrossRefGoogle Scholar
  35. 35.
    Y. Zhang, M. Qiu, Y. Yu, B. Wen, and L. Cheng, ACS Appl. Mater. Interfaces 9, 809 (2017).CrossRefGoogle Scholar
  36. 36.
    Y. Zhang, Z. Yang, and B. Wen, Adv. Mater. Int. 6, 1900375 (2019).CrossRefGoogle Scholar
  37. 37.
    H.D. Gesser and G.W.P.C. Goswami, Chem. Rev. 89, 765 (1989).CrossRefGoogle Scholar
  38. 38.
    L.R. Fisher and J.N. Israelachvili, Nature 277, 548 (1979).CrossRefGoogle Scholar
  39. 39.
    T. Maki and S. Sakkar, J. Mater. Sci. Lett. 5, 28 (1986).CrossRefGoogle Scholar
  40. 40.
    G.L. Missing, S.C. Zhang, and G.V. Jayanthi, J. Am. Ceram. Soc. 76, 2707 (1993).CrossRefGoogle Scholar
  41. 41.
    B.C. Lippens and J.H. Deboer, J. Catal. 3, 44 (1964).CrossRefGoogle Scholar
  42. 42.
    D. Saha and S. Das, Trans. Ind. Ceram. Soc. 77, 1 (2018).CrossRefGoogle Scholar
  43. 43.
    M.K. Park, H.N. Kim, S.S. Baek, E.S. Kang, Y.K. Baek, and D.K. Kim, Solid State Phenom. 124–126, 743 (2007).CrossRefGoogle Scholar
  44. 44.
    T. Islama, U. Mittalab, A.T. Nimalb, and M.U. Sharmab, Int. J. Smart Nano Mater. 5, 169 (2014). Scholar
  45. 45.
    H.E. Endres and S. Drost, Sens. Actuators B 4, 95 (1991). Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  • Preeti Lata Mahapatra
    • 1
  • Partha Pratim Mondal
    • 1
  • Sagnik Das
    • 1
  • Debdulal Saha
    • 1
    Email author
  1. 1.Functional Materials and Devices DivisionCSIR- Central Glass and Ceramic Research InstituteKolkataIndia

Personalised recommendations