Networked Conductive Polythiophene/Polyaniline Bottlebrushes with Modified Carbon Nanotubes As Hole Transport Layer in Organic Photovoltaics

  • Lianbing Deng
  • Daming LiEmail author
  • Samira AgbolaghiEmail author


Three types of hole transport layers (HTLs) were developed based on multi-walled carbon nanotubes (CNTs), including pure CNT thin films, CNT:poly(3-thiophene ethanol) (P3ThEt)-g-polyaniline (PANI) nanocomposites, and CNT-g-poly(3-dodecyl thiophene) (PDDT):P3ThEt-g-PANI interconnected networks, and utilized in poly[benzodithiophene-bis(decyltetradecyl-thien) naphthothiadiazole] (PBDT-DTNT):phenyl-C61-butyric acid methyl ester (PC61BM) and poly[bis(triiso-propylsilylethynyl) benzodithiophene-bis(decyltetradecyl-thien) naphthobisthiadiazole] (PBDT-TIPS-DTNT-DT):PC61BM solar cells. Pure CNTs were not the appropriate candidates for application instead of conventional poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTLs. To tackle this issue, the CNT:P3ThEt-g-PANI and CNT-g-PDDT:P3ThEt-g-PANI films were focused with thicknesses of 10 nm and 20 nm. The prominent characteristics peaked at 20-nm thin films of CNT-g-PDDT:P3ThEt-g-PANI, demonstrating the largest power conversion efficiencies (PCE) of 5.65 (12.84 mA/cm2, 62%, and 0.71 V) and 4.80% (11.59 mA/cm2, 60%, and 0.69 V) in the BDT-DTNT and PBDT-TIPS-DTNT-DT based devices, respectively. The CNT-g-PDDT:P3ThEt-g-PANI thin films which possess an interconnected network, composed of grafted-CNTs and P3ThEt-g-PANI bottlebrushes, were proper alternatives for conventional PEDOT:PSS HTLs and warranted the superior photovoltaic results by smooth morphologies (root mean square = 1.0–1.1 nm) and low sheet resistance (2.2–8.3 × 104 Ω/sq). The corresponding systems without grafting of CNT precursors were the second categories of well-functioned HTLs (3.13–4.04%) and had somehow decreased physical and photovoltaic properties.

Graphic Abstract


HTL CNT polythiophene PANI PCE 



Project funded by China Postdoctoral Science Foundation, the Electronic Fence System project, the Project of FDCT, and the Project of the Macao Foundation.

Supplementary material

11664_2019_7852_MOESM1_ESM.pdf (1.7 mb)
Supplementary material 1 (PDF 1715 kb)


  1. 1.
    C.J. Brabec, N.S. Sariciftci, and J.C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).CrossRefGoogle Scholar
  2. 2.
    H. Hoppe and N.S. Sariciftci, J. Mater. Res. 19, 194 (2004).CrossRefGoogle Scholar
  3. 3.
    G. Yu and A.J. Heeger, J. Appl. Phys. 78, 4510 (1995).CrossRefGoogle Scholar
  4. 4.
    J.U. Lee, A. Cirpan, T. Emrick, T.P. Russell, and W.H. Jo, J. Mater. Chem. 19, 1483 (2009).CrossRefGoogle Scholar
  5. 5.
    H. Hoppe and N.S. Sariciftci, J. Mater. Chem. 16, 45 (2006).CrossRefGoogle Scholar
  6. 6.
    G. Dennler, M.C. Scharber, and C.J. Brabec, Adv. Mater. 21, 1323 (2009).CrossRefGoogle Scholar
  7. 7.
    S.A. Carter, M. Angelopoulos, S. Karg, P.J. Brock, and J.C. Scott, Appl. Phys. Lett. 70, 2067 (1997).CrossRefGoogle Scholar
  8. 8.
    T.M. Brown, J.S. Kim, R.H. Friend, F. Cacialli, R. Daik, and W.J. Feast, Appl. Phys. Lett. 75, 1679 (1999).CrossRefGoogle Scholar
  9. 9.
    S. Khodabakhsh, B.M. Sanderson, J. Nelson, and T.S. Jones, Adv. Funct. Mater. 16, 95 (2006).CrossRefGoogle Scholar
  10. 10.
    H. Lian, N. Jun, A. Bolag, A. Hexig, N. Gerile, O. Tegus, and S. Lin, Solid State Phenom. 288, 113 (2019).CrossRefGoogle Scholar
  11. 11.
    M.S. Ramasamy, K.Y. Ryu, J.W. Lim, A. Bibi, H. Kwon, J.E. Lee, D.H. Kim, and K. Kim, Nanomaterials 9, 1328 (2019).CrossRefGoogle Scholar
  12. 12.
    A. Rana, A. Kumar, S. Chand, and R.K. Singh, J. Appl. Phys. 125, 053102 (2019).CrossRefGoogle Scholar
  13. 13.
    The material information is available in the H.C. Starck web site
  14. 14.
    W.H. Kim, A.J. Mäkinen, N. Nikolov, R. Shashidhar, H. Kim, and Z.H. Kafafi, Appl. Phys. Lett. 80, 3844 (2002).CrossRefGoogle Scholar
  15. 15.
    H. Yan, P. Lee, N.R. Armstrong, A. Graham, G.A. Evmenenko, P. Dutta, and T.J. Marks, J. Am. Chem. Soc. 127, 3172 (2005).CrossRefGoogle Scholar
  16. 16.
    J. Van De Lagemaat, T.M. Barnes, G. Rumbles, S.E. Shaheen, T.J. Coutts, C. Weeks, I. Levitsky, J. Peltola, and P. Glatkowski, Appl. Phys. Lett. 88, 233503 (2006).CrossRefGoogle Scholar
  17. 17.
    K. Norrman, M.V. Madsen, S.A. Gevorgyan, and F.C. Krebs, J. Am. Chem. Soc. 132, 16883 (2010).CrossRefGoogle Scholar
  18. 18.
    A.W. Hains and T.J. Marks, Appl. Phys. Lett. 92, 023504 (2008).CrossRefGoogle Scholar
  19. 19.
    M. Kemerink, S. Timpanaro, M.M. De Kok, E.A. Meulenkamp, and F.J. Touwslager, J. Phys. Chem. B 108, 18820 (2004).CrossRefGoogle Scholar
  20. 20.
    L.M. Chen, Z. Xu, Z. Hong, and Y. Yang, J. Mater. Chem. 20, 2575 (2010).CrossRefGoogle Scholar
  21. 21.
    M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, and D.S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).CrossRefGoogle Scholar
  22. 22.
    S.K. Hau, H.L. Yip, N.S. Baek, J. Zou, K. O’Malley, and A.K.Y. Jen, Appl. Phys. Lett. 92, 225 (2008).CrossRefGoogle Scholar
  23. 23.
    Z. Zhao, Q. Wu, F. Xia, X. Chen, Y. Liu, W. Zhang, J. Zhu, S. Dai, and S. Yang, ACS Appl. Mater. Interfaces 7, 1439 (2015).CrossRefGoogle Scholar
  24. 24.
    L. Lu, T. Xu, I.H. Jung, and L. Yu, J. Phys. Chem. C 118, 22834 (2014).CrossRefGoogle Scholar
  25. 25.
    Y. Jiang, S. Xiao, B. Xu, C. Zhan, L. Mai, X. Lu, and W. You, ACS Appl. Mater. Interfaces 8, 11658 (2016).CrossRefGoogle Scholar
  26. 26.
    J. Kim, H. Kim, G. Kim, H. Back, and K. Lee, ACS Appl. Mater. Interfaces 6, 951 (2014).CrossRefGoogle Scholar
  27. 27.
    H.T. Chien, F. Pilat, T. Griesser, H. Fitzek, P. Poelt, and B. Friedel, ACS Appl. Mater. Interfaces 10, 10102 (2018).CrossRefGoogle Scholar
  28. 28.
    W.J. Ke, G.H. Lin, C.P. Hsu, C.M. Chen, Y.S. Cheng, T.H. Jen, and S.A. Chen, J. Mater. Chem. 21, 13483 (2011).CrossRefGoogle Scholar
  29. 29.
    W. Zhao, L. Ye, S. Zhang, B. Fan, M. Sun, and J. Hou, Sci. Rep. 4, 6570 (2014).CrossRefGoogle Scholar
  30. 30.
    J.W. Jung, J.U. Lee, and W.H. Jo, J. Phys. Chem. C 114, 633 (2009).CrossRefGoogle Scholar
  31. 31.
    W.J. Bae, K.H. Kim, Y.H. Park, and W.H. Jo, Chem. Commun. 22, 2768 (2003).CrossRefGoogle Scholar
  32. 32.
    W.J. Bae, K.H. Kim, W.H. Jo, and Y.H. Park, Macromolecules 38, 1044 (2005).CrossRefGoogle Scholar
  33. 33.
    Y. Sun, S.C. Chien, H.L. Yip, Y. Zhang, K.S. Chen, D.F. Zeigler, F.C. Chen, B. Lin, and A.K.Y. Jen, Chem. Mater. 23, 5006 (2011).CrossRefGoogle Scholar
  34. 34.
    E. Kymakis, M.M. Stylianakis, G.D. Spyropoulos, E. Stratakis, E. Koudoumas, and C. Fotakis, Sol. Energy Mater. Sol. Cells 96, 298 (2012).CrossRefGoogle Scholar
  35. 35.
    C.T. Smith, R.W. Rhodes, M.J. Beliatis, K.D.G. Imalka Jayawardena, L.J. Rozanski, C.A. Mills, and P.S.R. Silva, Appl. Phys. Lett. 105, 129 (2014).Google Scholar
  36. 36.
    R. Sarvari, M. Akbari-Alanjaraghi, B. Massoumi, Y. Beygi-Khosrowshahi, and S. Agbolaghi, New J. Chem. 41, 6371 (2017).CrossRefGoogle Scholar
  37. 37.
    B. Massoumi, R. Sarvari, and S. Agbolaghi, Int. J. Polym. Mater. Polym. Biomater. 67, 808 (2018).CrossRefGoogle Scholar
  38. 38.
    M. Wang, X. Hu, P. Liu, W. Li, X. Gong, F. Huang, and Y. Cao, J. Am. Chem. Soc. 133, 9638 (2011).CrossRefGoogle Scholar
  39. 39.
    J. Tong, L. An, J. Li, P. Zhang, P. Guo, C. Yang, Q. Su, X. Wang, and Y. Xia, J. Macromol. Sci. A 54, 176 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Zhuhai Da Hengqin Science and Technology Development Co., LtdHengqin New AreaChina
  2. 2.Guangdong Qinzhi Science and Technology Research InstituteHengqin New AreaChina
  3. 3.Huazhong University of Science and TechnologyWuhanChina
  4. 4.Institute of Data ScienceCity University of MacauMacauChina
  5. 5.Chemical Engineering Department, Faculty of EngineeringAzarbaijan Shahid Madani UniversityTabrizIran

Personalised recommendations