Gallium Phosphide Solar Cell Structures with Improved Quantum Efficiencies

  • Hui-Ying SiaoEmail author
  • Ryan J. Bunk
  • Jerry M. Woodall
Topical Collection: 61st Electronic Materials Conference 2019
Part of the following topical collections:
  1. 61st Electronic Materials Conference 2019


Gallium phosphide (GaP) solar cell structures with improved quantum efficiencies were realized using a modified liquid phase epitaxy (LPE) technique and diodes formed using semi-transparent Schottky contacts. The improvement is due to the addition of a small amount of aluminum to the gallium and phosphorus containing LPE melt. The Al reduces the background concentration of oxygen in the melt, which is known to produce deep trap states in GaP. Additionally, it was found that by depositing an aluminum (Al)-rich AlGaP layer on top of the active GaP and then selectively etching it away, the surface morphology of the active layer was significantly improved. Thus, the modified LPE technique eliminates the major problem of meniscus lines associated with the standard LPE method.


Liquid phase epitaxy (LPE) gallium phosphide III–V semiconductors 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Funding was provided by U.S. Army (Grant No. W911NF1910130).


  1. 1.
    R. Corkish, Sol. Cells 31, 537 (1991).CrossRefGoogle Scholar
  2. 2.
    F. Ernst and P. Pirouz, J. Appl. Phys. 64, 4526 (1988).CrossRefGoogle Scholar
  3. 3.
    A. De Vos, J. Phys. D Appl. Phys. 13, 839 (1980).CrossRefGoogle Scholar
  4. 4.
    C. Henry, J. Appl. Phys. 51, 4494 (1980).CrossRefGoogle Scholar
  5. 5.
    T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, Appl. Phys. Lett. 70, 381 (1997).CrossRefGoogle Scholar
  6. 6.
    T. Grassman, D. Chmielewski, S. Carnevale, J. Carlin, and S. Ringel, in Photovoltaic Specialists Conference (2016), pp. 2036–2039.Google Scholar
  7. 7.
    D. Berdebes, J. Bhosale, K.H. Montgomery, X. Wang, A.K. Ramdas, J.M. Woodall, and M.S. Lundstrom, IEEE J. Photovolt. 3, 1342 (2012).CrossRefGoogle Scholar
  8. 8.
    J. Akinlami and O. Olatunji, J. Nat. Sci. Eng. Technol. 13, 18 (2014).Google Scholar
  9. 9.
    B. Hicks and D.F. Manley, Solid State Commun. 7, 1463 (1969).CrossRefGoogle Scholar
  10. 10.
    B. Jayant Baliga, J. Electrochem. Soc. 133, 5C (1986).CrossRefGoogle Scholar
  11. 11.
    M. Leys, M. Pistol, H. Titze, and L. Samuelson, J. Electron. Mater. 18, 25 (1989).CrossRefGoogle Scholar
  12. 12.
    J. Woodall, Science 208, 908 (1980).CrossRefGoogle Scholar
  13. 13.
    C. Allen, J.-H. Jeon, and J. Woodall, Sol. Energy. Mater. Sol. Cells 94, 865 (2010).CrossRefGoogle Scholar
  14. 14.
    P. Capper, S. Irvine, and T. Joyce, Epitaxial Crystal Growth: Method and Materials, 2nd edn. (Springer, 2017), pp. 309-312.Google Scholar
  15. 15.
    S. Simeonov, E. Kafedjiiska, and A. Guerassimov, Sol. Cells 20, 99 (1987).CrossRefGoogle Scholar
  16. 16.
    W. Gartner, Phys. Rev. 116, 84 (1959).CrossRefGoogle Scholar
  17. 17.
    D. Lynch, W. Hunter, in Handbook of Optical Constants of Solids, ed. by Palik, 2nd edn. (Elsevier, 1991), pp. 293–294.Google Scholar
  18. 18.
    M. Small, K. Bachem, and R. Potemski, J. Crystal Growth 39, 216 (1977).CrossRefGoogle Scholar
  19. 19.
    M. Small, A. Blakeslee, K. Shih, and R. Potemski, J. Crystal Growth 30, 257 (1975).CrossRefGoogle Scholar
  20. 20.
    A. Armstrong, A. Arehart, and S. Ringel, J. Appl. Phys. 97, 083529 (2005).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of CaliforniaDavisUSA

Personalised recommendations