Advertisement

Electronic Structure, Mechanical and Magnetic Properties of the Quaternary Perovskites CaA3V4O12 (A = Mn, Fe, Co, Ni and Cu)

  • Ahmad Shah
  • Zahid AliEmail author
  • Shahid Mehmood
  • Imad Khan
  • Iftikhar Ahmad
Article
  • 15 Downloads

Abstract

Quaternary perovskites CaA3V4O12 (A = Mn, Fe, Co, Ni and Cu) have been studied theoretically using a generalized gradient approximation along with Hubbard potential (GGA + U) in the domain of density functional theory (DFT). A decrease in the lattice constants of these compounds is observed when going from CaMn3V4O12 to CaCu3V4O12 due to the increase in the number of electrons in the trending of the metals. Electron charge densities in different crystallographic planes show that the bonds between Ca–O, A/V–O and A–V are ionic, covalent and metallic, respectively. The electronic band structures show the metallic behavior of these compounds except that CaMn3V4O12 and CaFe3V4O12 are half-metals. The elastic moduli of these compounds indicate the hardness and increases in a sequence going from CaMn3V4O12 to CaCu3V4O12, and also reveal their ductile nature. The optimized energies in different magnetic phases and the post-DFT calculations confirm that CaMn3V4O12 and CaCo3V4O12 are anti-ferromagnetic, and CaFe3V4O12 and CaNi3V4O12 are ferromagnetic, whereas CaCu3V4O12 is a paramagnetic material. Based on the above properties, it is expected that these compounds are potential candidates for storage devices.

Keywords

Quaternary perovskites ab initio calculations electronic properties elastic properties magnetic properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We acknowledge the financial support from the Higher Education Commission of Pakistan (HEC), Project No. 10216/KPK/NRPU/R&D/HEC/2017.

References

  1. 1.
    W. Yi, A.J. Princep, Y. Guo, R.D. Johnson, D. Khalyavin, P. Manuel, A. Senyshyn, I.A. Presniakov, A.V. Sobolev, Y. Matsushita, M. Tanaka, A.A. Belik, and A.T. Boothroyd, Inorg. Chem. 54, 8012 (2015).CrossRefGoogle Scholar
  2. 2.
    Y.G. Zainulin, Inorg. Mater. 49, 721 (2013).CrossRefGoogle Scholar
  3. 3.
    G. Murtaza and I. Ahmad, Phys. B 406, 3222 (2011).CrossRefGoogle Scholar
  4. 4.
    Z. Zeng, M. Greenblatt, M.A. Subramanian, and M. Croft, Phys. Rev. Lett. 82, 3164 (1999).CrossRefGoogle Scholar
  5. 5.
    N.I. Kadyrova, G.S. Zakharova, and Y.G. Zainulin, Dokl. Chem. 392, 251 (2003).CrossRefGoogle Scholar
  6. 6.
    J. Yao, B. Deng, L.J. Sherry, A.D. McFarland, D.E. Ellis, R.P.V. Duyne, and J.A. Ibers, Inorg. Chem. 47, 2706 (2008).CrossRefGoogle Scholar
  7. 7.
    Y. Shimakava, Inorg. Chem. 47, 8562 (2008).CrossRefGoogle Scholar
  8. 8.
    S.V. Ovsyannikov, Y.G. Zainulin, N.I. Kadyrova, A.P. Tyutynnik, A.S. Semenova, and A.E. Karkin, Inorg. Chem. 52, 11703 (2013).CrossRefGoogle Scholar
  9. 9.
    S. Zhang, T. Saito, M. Mizumaki, W.T. Chen, T. Tohyama, and Y. Shimakawa, J. Am. Chem. Soc. 135, 6056 (2013).CrossRefGoogle Scholar
  10. 10.
    S. Zhang, T. Saito, W.T. Chen, M. Mizumaki, and Y. Shimakawa, Inorg. Chem. 52, 10610 (2013).CrossRefGoogle Scholar
  11. 11.
    M.R. Li, J.P. Hodges, M. Retuerto, Z. Deng, P.W. Stephens, M.C. Croft, X. Deng, G. Kotliar, J. Sánchez-Benítez, D. Walker, and M. Greenblatt, Chem. Mater. 28, 3148 (2016).CrossRefGoogle Scholar
  12. 12.
    K. Leinenweber, J. Linton, A. Navrotsky, Y. Fei, and J.B. Parise, Phys. Chem. Miner. 22, 251 (1995).CrossRefGoogle Scholar
  13. 13.
    J. Li, M.A. Subramanian, H.D. Rosenfeld, C.Y. Jones, B.H. Toby, and A.W. Sleight, Chem. Mater. 16, 5223 (2004).CrossRefGoogle Scholar
  14. 14.
    N.I. Kadyrova, Y.G. Zainulin, A.P. Tyutynnik, N.V. Mel’nikova, and I.S. Ustinova, Inorg. Mater. 47, 1396 (2011).CrossRefGoogle Scholar
  15. 15.
    K. Shiro, I. Yamada, N. Ikeda, K. Ohgushi, M. Mizumaki, R. Takahashi, N. Nishiyama, T. Inoue, and T. Irifune, Inorg. Chem. 52, 1604 (2013).CrossRefGoogle Scholar
  16. 16.
    S.V. Ovsyannikov, E. Bykova, A. Pakhomova, D.P. Kozlenko, M. Bykov, S.E. Kichanov, N.V. Morozova, I.V. Korobeinikov, F. Wilhelm, A. Rogalev, A.A. Tsirlin, A.V. Kurnosov, Y.G. Zainulin, N.I. Kadyrova, A.P. Tyutyunnik, and L. Dubrovinsky, Inorg. Chem. 56, 6251 (2017).CrossRefGoogle Scholar
  17. 17.
    H.B. Rhee and W.E. Pickett, Phys. Rev. B 90, 205119 (2014).CrossRefGoogle Scholar
  18. 18.
    H. Shiraki, T. Saito, M. Azuma, and Y. Shimakawa, J. Phys. Soc. Jpn. 77, 0647051 (2008).CrossRefGoogle Scholar
  19. 19.
    D. Singh, Plane Wave Pseudo-Potential and LAPW Method (Bosten, Dortrecht, London: Kluwer Academic Publishers, 1994).CrossRefGoogle Scholar
  20. 20.
    P. Blaha, K. Schwarz, G. K. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k: an augmented plane waves plus local orbitals program for calculating crystal properties, in WIEN2k 14.2 (Vienna, Austria: Institute of Physical and Theoretical Chemistry, Vienna University of Technology) (2001).Google Scholar
  21. 21.
    J.P. Perdew, K. Burka, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  22. 22.
    V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993).CrossRefGoogle Scholar
  23. 23.
    Z. Ali, I. Khan, I. Ahmad, S. Naeem, H.A.R. Aliabad, S.J. Asadabadi, and D. Zhang, Phys. B 423, 16 (2013).CrossRefGoogle Scholar
  24. 24.
    J.P. Perdew and A. Zunger, Phys. Rev. B. 23, 5048 (1981).CrossRefGoogle Scholar
  25. 25.
    T. Charpin, A package for calculating elastic tensors of cubic phase using WIEN (Paris: Laboratory of Geometrix, 2001).Google Scholar
  26. 26.
    B. Allen, Boltzmann theory and resistivity of metals, ed. J.R. Chelikowsky and S.G. Louie (Boston: Kluwer, 1996),CrossRefGoogle Scholar
  27. 27.
    G.K.H. Madsen and D.J. Singh, Comput. Phys. Commun. 175, 67 (2006).CrossRefGoogle Scholar
  28. 28.
    F. Birch, Phys. Rev. 71, 809 (1947).CrossRefGoogle Scholar
  29. 29.
    G. Zhang, Y. Wang, Z. Cheng, Y. Yan, C. Peng, C. Wang, and S. Dong, Phys. Chem. Chem. Phys. 17, 12717 (2015).CrossRefGoogle Scholar
  30. 30.
    N.I. Kadyrova, Y.G. Zaynulin, A.P. Tyutyunnik, N.V. Melnikova, and A.A. Mirzorakhimov, Bull. Russ. Acad. Sci. Phys. 80, 620 (2016).CrossRefGoogle Scholar
  31. 31.
    N.I. Kadyrova, Y.G. Zaynulin, A.P. Tyutyunnik, D.G. Kellerman, and N.V. Melnikova, Russ. J. Inorg. Chem. 62, 103 (2017).CrossRefGoogle Scholar
  32. 32.
    A.L. Allred, Inorg. Nucl. Chem. 17, 215 (1961).CrossRefGoogle Scholar
  33. 33.
    W.J. Mortier, S.K. Ghosh, and S. Shankar, Am. Chem. Soc. 108, 4315 (1986).CrossRefGoogle Scholar
  34. 34.
    L.E. Brus, Chem. Phys. 79, 5566 (1983).Google Scholar
  35. 35.
    A. Munoza, J.A. Alonsob, M.J.M. Lopeb, C.D.L. Calleb, and M.T.F. Diaz, J. Solid State Chem. 179, 3365 (2006).CrossRefGoogle Scholar
  36. 36.
    S. Mehmood, Z. Ali, I. Khan, and I. Ahmad, Mater. Chem. Phys. 196, 222 (2017).CrossRefGoogle Scholar
  37. 37.
    I. Yamada, K. Takata, N. Hayashi, S. Shinohara, M. Azuma, S. Mori, S. Muranaka, Y. Shimakawa, and M. Takano, Angew. Chem. Int. Ed. 47, 7032 (2008).CrossRefGoogle Scholar
  38. 38.
    W. Chen, J.H. Pohls, G. Hautier, D. Broberg, S. Bajaj, U. Aydemir, Z.M. Gibbs, H. Zhu, M. Asta, G.J. Snyder, B. Meredig, M.A. White, K. Perssonand, and A. Jain, J. Mater. Chem. C. 4, 4414 (2016).CrossRefGoogle Scholar
  39. 39.
    J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. Lett. 71, 4182 (1993).CrossRefGoogle Scholar
  40. 40.
    J. Wang, S. Yip, S.R. Phillpot, and D. Wolf, Phys. Rev. B 52, 12627 (1995).CrossRefGoogle Scholar
  41. 41.
    G. Sinko and N.A. Smirnov, J. Phys.: Condens. Matter 14, 6989 (2002).Google Scholar
  42. 42.
    W. Voigt, “Lehrbuch der Kristallphysik, Taubner”, Leipzig (New York: Springer, 1928).Google Scholar
  43. 43.
    R. Hill, Proc. Phys. Soc. A 65, 349 (1952).CrossRefGoogle Scholar
  44. 44.
    S.F. Pugh, Philos. Mag. 45, 823 (1954).CrossRefGoogle Scholar
  45. 45.
    D.G. Pettifor, Mater. Sci. Technol. 8, 345 (1992).CrossRefGoogle Scholar
  46. 46.
    K. Chen, L.R. Zhao, J. Rodgers, and J.S. Tse, Phys. D: Appl. Phys. 36, 2725 (2003).CrossRefGoogle Scholar
  47. 47.
    P.H. Mott, J.R. Dorgan, and C.M. Roland, J. Sound Vib. 312, 572 (2008).CrossRefGoogle Scholar
  48. 48.
    H. Fu, D. Li, F. Peng, T. Gao, and X. Cheng, Comput. Mater. Sci. 44, 774 (2008).CrossRefGoogle Scholar
  49. 49.
    L. Kleinman, Phys. Rev. 128, 2614 (1962).CrossRefGoogle Scholar
  50. 50.
    L. Pal, F. Kren, G. Kadar, P. Szabo, and T. Tarnoczi, J. Appl. Phys. 39, 538 (1968).CrossRefGoogle Scholar
  51. 51.
    P.F. Ladwig, Y.A. Chang, E.S. Linville, A. Morrone, J. Gao, B.B. Pant, A.E. Schlutz, and S. Mao, J. Appl. Phys. 94, 979 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Center for Computational Materials ScienceUniversity of MalakandChakdara, Dir (Lower)Pakistan
  2. 2.Department of PhysicsUniversity of MalakandChakdara, Dir (Lower)Pakistan

Personalised recommendations