First-Principles Study of Structural, Elastic, and Thermodynamic Properties of PdSn4 with Ni Addition

  • Yali TianEmail author
  • Lifang Zhang
  • Ping WuEmail author


The structural, mechanical, thermodynamic, and electronic properties of PdSn4 with Ni addition are investigated by first-principles calculations. Substitution of Ni for Pd in PdSn4 causes a decrease of the lattice constants as well as cell volume due to the smaller atomic radius of Ni compared with Pd. The studied structures are thermodynamically stable, but the stability decreases with increasing Ni concentration. The bulk modulus increases while the shear modulus, Young’s modulus, hardness, Debye temperature, and minimum heat transfer ability decrease on Ni substitution. PdSn4 is elastic–brittle. Substitution leads to a ductile structure, and the ductility increases with the Ni fraction except for Pd2Ni2Sn16. The anisotropic character is estimated both based on the formula and graphically, revealing an increasing anisotropic tendency after substitution. Based on their total density of states, all the compounds are metallic. Substitution decreases the hybridization of Pd-d and Sn-p states in the lower energy range but increases the hybridization of Ni-d and Sn-p electrons near the Fermi level.


First-principles calculations intermetallic compounds mechanical properties brittleness and ductility 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by the National Natural Science Foundation of China (51572190); the supercomputing resources were supported by the High Performance Computing Center of Tianjin University, China. The authors would like to acknowledge Lifang Zhang (Tianjin University of Commerce) and Ping Wu (Tianjin University) for assistance with data analysis and computational work.


  1. 1.
    C.E. Ho, Y.C. Lin, and S.J. Wang, Thin Solid Films 544, 551 (2013).CrossRefGoogle Scholar
  2. 2.
    C.E. Ho, W.H. Wu, L.H. Hsu, and C.S. Lin, J. Electron. Mater. 41, 11 (2012).CrossRefGoogle Scholar
  3. 3.
    J.W. Yoon, B.I. Noh, and J.H. Yoon, J. Alloys Compd 509, 153 (2011).CrossRefGoogle Scholar
  4. 4.
    S.P. Peng, W.H. Wu, C.E. Ho, and Y.M. Huang, J. Alloys Compd 493, 431 (2010).CrossRefGoogle Scholar
  5. 5.
    C.-H. Wang, K.-T. Li, and C.-Y. Lin, Intermetallics 67, 102 (2015).CrossRefGoogle Scholar
  6. 6.
    C.-H. Wang and K.-T. Li, J. Alloys Compd. 654, 546 (2016).CrossRefGoogle Scholar
  7. 7.
    M.A. Rahman, C.E. Ho, W. Gierlotka, and J.C. Kuo, J. Electron. Mater. 43, 4582 (2014).CrossRefGoogle Scholar
  8. 8.
    C.-E. Ho, S.-W. Lin, and Y.-C. Lin, J. Alloys Compd. 509, 7749 (2011).CrossRefGoogle Scholar
  9. 9.
    K. Masui and M. Kajihara, J. Alloys Compd. 485, 144 (2009).CrossRefGoogle Scholar
  10. 10.
    R. Kubiak and M. Wolcyrz, J. Less-Common Metals 97, 265 (1984).CrossRefGoogle Scholar
  11. 11.
    S.A. Belyakov and C.M. Gourlay, Intermetallics 25, 48 (2012).CrossRefGoogle Scholar
  12. 12.
    C. Schimpf, P. Kalanke, S.L. Shang, Z.K. Liu, and A. Leineweber, Mater. Des. 109, 324 (2016).CrossRefGoogle Scholar
  13. 13.
    W.J. Boettinger, M.D. Vaudin, M.E. Williams, L.A. Bendersky, and W.R. Wagner, J. Electron. Mater. 32, 511 (2003).CrossRefGoogle Scholar
  14. 14.
    G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  15. 15.
    J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  16. 16.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  17. 17.
    M. Methfessel and A.T. Paxton, Phys. Rev. B 40, 3616 (1989).CrossRefGoogle Scholar
  18. 18.
    Y. Yang, Y.Z. Li, H. Lu, C. Yu, and J.M. Chen, Comput. Mater. Sci. 65, 490 (2012).CrossRefGoogle Scholar
  19. 19.
    J. Nylén, F.J. Garcìa Garcìa, B.D. Mosel, R. Pöttgen, and U. Häussermann, Solid State Sci. 6, 147 (2004).CrossRefGoogle Scholar
  20. 20.
    S. Ramos de Debiaggi, C. Deluque Toro, G.F. Cabeza, A. Fernández Guillermet, J. Alloys Compd.576, 302 (2013)Google Scholar
  21. 21.
    G. Ghosh, Metall. Mater. Trans. A 40A, 4 (2009).CrossRefGoogle Scholar
  22. 22.
    S.Q. Wang and H.Q. Ye, J. Phys.: Condens. Matter. 15, 5307 (2003).Google Scholar
  23. 23.
    L. Fast, J.M. Wills, B. Johansson, and O. Eriksson, Phys. Rev. B 51, 17431 (1995).CrossRefGoogle Scholar
  24. 24.
    J.L. Du, B. Wen, R. Melnik, and Y. Kawazoe, J. Alloys Compd. 588, 96 (2014).CrossRefGoogle Scholar
  25. 25.
    M.L. Wang, Z. Chen, C.J. Xia, Y. Wu, and D. Chen, Mater. Chem. Phys. 197, 145 (2017).CrossRefGoogle Scholar
  26. 26.
    H.-C. Cheng, C.-F. Yu, and W.-H. Chen, J. Alloys Compd. 546, 286 (2013).CrossRefGoogle Scholar
  27. 27.
    X.D. Zhang, C.H. Ying, and Z.J. Li, Superlattices Microstruct. 52, 459 (2012).CrossRefGoogle Scholar
  28. 28.
    C.M. Li, S.M. Zeng, and Z.Q. Chen, Comput. Mater. Sci. 93, 210 (2014).CrossRefGoogle Scholar
  29. 29.
    S.I. Ranganathan and M. Ostoja-Starzewskl, Phys. Rev. Lett. 101, 055504 (2008).CrossRefGoogle Scholar
  30. 30.
    Y. Liu, X. Chong, Y. Jiang, R. Zhou, and J. Peng, Phys. B Condens. Matter 506, 1 (2017).CrossRefGoogle Scholar
  31. 31.
    Y.H. Duan, Y. Sun, and M.J. Peng, Comput. Mater. Sci. 92, 258 (2014).CrossRefGoogle Scholar
  32. 32.
    D.R. Clarke and C.G. Levi, Annu. Rev. Mater. Res. 33, 383 (2003).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Department of Applied PhysicsTianjin University of CommerceTianjinPeople’s Republic of China
  2. 2.Department of Applied Physics, Institute of Advanced Materials Physics, Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Faculty of ScienceTianjin UniversityTianjinPeople’s Republic of China

Personalised recommendations