Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Characterization and Dielectric Properties of Bismaleimide Modified by SiO2-Coated Graphene Composites

  • 24 Accesses

Abstract

The silane coupling agent vinyl trimethoxysilane (a171) was used to modify graphene (GE), SiO2 microspheres prepared by the Sol–Gel method coated on the surface of GE to obtain SiO2-coated modified GE (SiO2@a171-GE). The matrix (MBAE) was synthesized from 4,4′-diaminodiphenyl methane bismaleimide (MBMI) and diallyl bisphenol A (BBA), Bisphenol A bisallyl ether (BBE), in which BBA and BBE were used as reactive diluents. At the same time, SiO2@a171-GE/MBAE composites were prepared by in situ polymerization, which has SiO2@a171-GE as the reinforcement and MBAE as the matrix. The effect of SiO2@a171-GE on the MBAE material properties was studied by characterizing and analyzing the modified graphene and the coating function. The results show that GE is successfully modified by silane coupling agent, and SiO2 microspheres are uniformly coated on the surface of a171-GE. SiO2@a171-GE component improves the composite properties. The dielectric constant and the dielectric loss are about 70 and 3.7 × 10−3 in the frequency range of 102–104 Hz, and the heat resistance enhances with the increase of SiO2@a171-GE. This composite has excellent dielectric, mechanical and thermal properties and has the potential to be an electrolyte material for supercapacitors.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    M. Yuan, Y. Zhang, B. Niu, F. Jiang, X. Yang, and M. Li, J. Mater. Sci. 54, 14456 (2019).

  2. 2.

    X. Deng, Q. Zhou, H. Huang, W. Zhou, X. Liang, G. Li, J. Guo, and S. Tang, Appl. Surf. Sci. 495, 143557 (2019)

  3. 3.

    H. Wei, Y. Zhang, H. Zhang, and Z. Jiang, High Perform. Polym. 27, 911 (2015).

  4. 4.

    A. Kotrotsos, P. Tsokanas, S. Tsantzalis, and V. Kostopoulos, J. Appl. Polym. Sci. 136, 47478 (2019)

  5. 5.

    Z. Liu, A. Hao, S. Zhang, Y.-S. Dessureault, and R. Liang, Carbon 153, 320 (2019).

  6. 6.

    X. Han, L. Yuan, A. Gu, and G. Liang, Compos. Part B Eng. 132, 28 (2018).

  7. 7.

    Y. Chen, H. Guo, M. Cai, C. Geng, C. Yue, and C. Teng, J. Electron. Mater. 47, 6021 (2018).

  8. 8.

    L. Xia, Y. Xu, K. Wang, and P. Chen, Polym. Adv. Technol. 26, 266 (2015).

  9. 9.

    Q. Zou, F. Xiao, S.Q. Gu, J. Li, D.J. Zhang, Y.F. Liu, and X.B. Chen, Ind. Eng. Chem. Res. 58, 16526 (2019).

  10. 10.

    J. Xu and C.P. Wong, J. Electron. Mater. 35, 1087 (2006).

  11. 11.

    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Nano Lett. 8, 902 (2008).

  12. 12.

    K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Solid State Commun. 146, 351 (2008).

  13. 13.

    X. Hong, W. Yu, and D.D.L. Chung, Carbon 111, 182 (2017).

  14. 14.

    I.-H. Lee, D. Yoo, P. Avouris, T. Low, and S.-H. Oh, Nat. Nanotechnol. 14, 313 (2019).

  15. 15.

    V. Pacheco-Pena, M. Beruete, P. Rodriguez-Uhbarri, and N. Engheta, New J. Phys. 21, 043056 (2019)

  16. 16.

    M.J. Deka, U. Baruah, and D. Chowdhury, Mater. Chem. Phys. 163, 236 (2015).

  17. 17.

    Y.J. Kwon, Y. Kim, H. Jeon, S. Cho, W. Lee, and J.U. Lee, Compos. Part B Eng. 122, 23 (2017).

  18. 18.

    Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen, Adv. Mater. 27, 2049 (2015).

  19. 19.

    N. Jamali, H. Khosravi, A. Rezvani, and E. Tohidlou, Fibers Polym. 20, 138 (2019).

  20. 20.

    Z. Chen, L. Guo, H. Yan, H. Yao, L. Li, and Q. Liu, Compos. Part B Eng. 161, 263 (2019).

  21. 21.

    S. Xu, J. Liu, Y. Xue, T. Wu, and Z. Zhang, Fuller. Nanotub. Carbon Nanostruct. 25, 40 (2017).

  22. 22.

    J. Li, Q. Yan, X. Zhang, J. Zhang, and Z. Cai, Polymers 11, 623 (2019).

  23. 23.

    H. Cho, H. Lee, J. Lee, W.J. Sung, B.-H. Kwon, C.-W. Joo, J.-W. Shin, J.-H. Han, J. Moon, J.-I. Lee, S. Cho, and N.S. Cho, Opt. Express 25, 9734 (2017).

  24. 24.

    L. Yu, C. Du, and X. Liu, Mater. Res. Express (2018). https://doi.org/10.1088/2053-1591/aaabca.

  25. 25.

    S. Sharma and A.S. Verma, Philos. Mag. 94, 867 (2014).

  26. 26.

    G. Zhang, S. Lu, and Y. Ke, Polym. Eng. Sci. 59, 274 (2019).

  27. 27.

    M. Rothe, Y. Zhao, G. Kewes, Z. Kochovski, W. Sigle, P.A. van Aken, C. Koch, M. Ballauff, Y. Lu, and O. Benson, Sci. Rep. 9, 3859 (2019)

  28. 28.

    R.A. Neher, K. Mecke, and H. Wagner, J. Stat. Mech. Theory Exp. (2008). https://doi.org/10.1088/1742-5468/2008/01/P01011.

  29. 29.

    L. La Spada and L. Vegni, Opt. Express 24, 5763 (2016).

  30. 30.

    K. Jagannadham, J. Electron. Mater. 40, 25 (2011).

Download references

Acknowledgments

The author(s) would like to express their appreciation to the project support by State Natural Sciences Foundation (China, 51177030) and the Harbin technology bureau subject leader (2015RAXXJ029).

Author information

Correspondence to Yufei Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, Y., Dai, G. et al. Characterization and Dielectric Properties of Bismaleimide Modified by SiO2-Coated Graphene Composites. Journal of Elec Materi 49, 1889–1895 (2020). https://doi.org/10.1007/s11664-019-07828-w

Download citation

Keywords

  • Bismaleimide
  • graphene
  • SiO2
  • mechanical properties
  • dielectric properties