Advertisement

Comprehensive Study of Structural, Magnetic and Dielectric Properties of Borate/Fe3O4 Glass Nanocomposites

  • T. A. TahaEmail author
  • A. A. Azab
  • E. H. El-Khawas
Article
  • 8 Downloads

Abstract

The objective of this work is to study the structural, magnetic and dielectric properties of 60 B2O3-10 ZnO-30-NaF: x Fe3O4 (x = 0.0 wt.%, 3.0 wt.%, 6.0 wt.%, 9.0 wt.%, 12 wt.% and 20 wt.%) glass nanocomposites. X-ray diffraction measurements indicated that the samples were amorphous except for the glass sample containing 20.0 wt.% Fe3O4, revealing the presence of a nanocrystalline magnetite phase having a cubic crystal structure with an average size of 24.10 ± 1.79 nm. Transmission electron microscopy analysis showed that Fe3O4 nanoparticles with an average size of 24.0 nm were dispersed homogeneously inside the borate glass matrix. Fourier transform infrared spectra of these samples exhibited bands from 422 cm−1 to 492 cm−1 for the vibration of the Fe-O bond in the [FeO4] group and vibration modes of BO3 and BO4 units. Magnetic analysis of these glasses revealed paramagnetic-like behaviors, with a very narrow hysteresis loop and very low coercivity (Hc), close to those of typical soft magnetic materials. The relative permittivity was increased and the dielectric loss \( \varepsilon^{\prime \prime } \) was enhanced with increasing Fe3O4 concentration. The energy needed to move the electron from one location to infinity (WM) increased from 0.18 to 1.28 eV with an increase in Fe3O4 content. Finally, the AC conductivity was enhanced with the addition of magnetite.

Keywords

Glass nanocomposite Fe3O4 magnetic properties dielectric constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Conflict of interest

The corresponding author states that there is no conflict of interest.

References

  1. 1.
    L. Rus, S. Rada, V. Rednic, E. Culea, M. Rada, A. Bot, N. Aldea, and T. Rusu, J. Non Cryst. Solids 402, 111 (2014).CrossRefGoogle Scholar
  2. 2.
    M. Georgieva, D. Tzankov, R. Harizanova, G. Avdeev, and C. Russel, Appl. Phys. A Mater. Sci. Process. 122, 160 (2016).CrossRefGoogle Scholar
  3. 3.
    A.A. Osipov, R.T. Zainullina, L.M. Osipova, M.V. Shtenberg, P.V. Khvorov, and S.M. Lebedeva, Glass Phys. Chem. 44, 211 (2018).CrossRefGoogle Scholar
  4. 4.
    P. Tartaj, M.P. Morales, S. Veintemillas-Verdaguer, T. Gonzalez-Carreno, and C.J. Serna, J. Phys. D Appl. Phys. 36, R182 (2003).CrossRefGoogle Scholar
  5. 5.
    M.M. Rashad, D.A. Rayan, M. El-Gendy, M.M. El Kholy, and T.A. Taha, J. Supercond. Nov. Magn. 31, 4191 (2018).CrossRefGoogle Scholar
  6. 6.
    T.A. Taha, S. Elrabaie, and M.T. Attia, J. Mater. Sci.: Mater. Electron. 29, 18493 (2018).Google Scholar
  7. 7.
    T.A. Taha, A.A. Azab, and M.A. Sebak, J. Mol. Struct. 1181, 14 (2019).CrossRefGoogle Scholar
  8. 8.
    M. Tadic, D. Markovic, V. Spasojevic, V. Kusigerski, M. Remskar, J. Pirnat, and Z. Jaglici, J. Alloys Compd. 441, 291 (2007).CrossRefGoogle Scholar
  9. 9.
    R.D. Zysler, D. Fiorani, and A.M. Testa, J. Magn. Magn. Mater. 224, 5 (2001).CrossRefGoogle Scholar
  10. 10.
    R.D. Zysler, M.V. Mansilla, and D. Fiorani, Eur. Phys. J. B 41, 171 (2004).CrossRefGoogle Scholar
  11. 11.
    S. El-Rabaie, T.A. Taha, and A.A. Higazy, Mater. Sci. Semicond. Process. 30, 631 (2015).CrossRefGoogle Scholar
  12. 12.
    S. El-Rabaie, T.A. Taha, and A.A. Higazy, Mater. Sci. Semicond. Process. 34, 88 (2015).CrossRefGoogle Scholar
  13. 13.
    S. El-Rabaie, T.A. Taha, and A.A. Higazy, Appl. Nanosci. 4, 219 (2014).CrossRefGoogle Scholar
  14. 14.
    H. Donya and T.A. Taha, J. Mater. Sci.: Mater. Electron. 29, 8610 (2018).Google Scholar
  15. 15.
    S. El-Rabaie, T.A. Taha, and A.A. Higazy, J. Alloy. Compd. 594, 102 (2014).CrossRefGoogle Scholar
  16. 16.
    V. Marghussian, Nano-Glass Ceramics: Processing, Properties and Applications (William Andrew, 2015).Google Scholar
  17. 17.
    S. Ram, Phys. Rev. B 51, 6280 (1995).CrossRefGoogle Scholar
  18. 18.
    R. Iordanova, Y. Dimitriev, V. Dimitriev, S. Kassabov, and D. Klissurski, J. Non-Cryst. Solids 201, 141 (1996).CrossRefGoogle Scholar
  19. 19.
    A. Kumar, S.B. Rai, and D.K. Rai, Mater. Res. Bull. 38, 333 (2003).CrossRefGoogle Scholar
  20. 20.
    M. Abo-Naf, F.H. El Batal, and M.A. Azooz, Mater. Chem. Phys. 77, 846 (2002).CrossRefGoogle Scholar
  21. 21.
    P. Pascuta and E. Culea, Mater. Lett. 62, 4127 (2008).CrossRefGoogle Scholar
  22. 22.
    P. Pascuta, R. Lungu, and I. Ardelean, J. Mater. Sci.: Mater. Electron. 21, 548 (2010).Google Scholar
  23. 23.
    P. Pascuta, J. Mater Sci.: Mater. Electron. 21, 338 (2010).Google Scholar
  24. 24.
    T.A. Taha and A.S. Abouhaswa, J. Mater Sci.: Mater. Electron. 29, 8100 (2018).Google Scholar
  25. 25.
    C.M. Hurd, Contemp. Phys. 23, 469 (1982).CrossRefGoogle Scholar
  26. 26.
    T. Komatsu and N. Soga, J. Chem. Phys. 72, 1781 (1980).CrossRefGoogle Scholar
  27. 27.
    A. Saqlain, M.U. Shah, and S.H. Alam, Mater. Sci. Eng. 31, 1010 (2011).CrossRefGoogle Scholar
  28. 28.
    T.G. Avancini, M.T. Souza, A.P.N. de Oliveira, S. Arcaro, and A.K. Alves, Ceram. Int. 45, 4360 (2019).CrossRefGoogle Scholar
  29. 29.
    H.Y. He, Int. J. Appl. Ceram. 11, 626 (2014).CrossRefGoogle Scholar
  30. 30.
    T.A. Taha and A.A. Azab, J. Mol. Struct. 1178, 39 (2019).CrossRefGoogle Scholar
  31. 31.
    T.A. Taha and A.A. Azab, J. Electron. Mater. 45, 5170 (2016).CrossRefGoogle Scholar
  32. 32.
    A. Ciżman, E. Rysiakiewicz-Pasek, M. Krupiński, M. Konon, T. Antropova, and M. Marszałek, Phys. Chem. Chem. Phys. 19, 23318 (2017).CrossRefGoogle Scholar
  33. 33.
    T.A. Taha, S. Elrabaie, and M.T. Attia, J. Electron. Mater. 48, 6797 (2019).CrossRefGoogle Scholar
  34. 34.
    J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, and P. Houenou, J. Non-Cryst. Solids 45, 57 (1981).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Physics Department, College of Science and ArtsJouf UniversityAl-GurayyatSaudi Arabia
  2. 2.Physics and Engineering Mathematics Department, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt
  3. 3.Solid State Electronics Laboratory, Physics Division, Solid State Physics DepartmentNational Research CentreGizaEgypt
  4. 4.Basic Science DepartmentHigher Technological InstituteTenth of Ramadan CityEgypt

Personalised recommendations