Advertisement

The Effect of Adsorbent Layer Thickness and Gallium Concentration on the Efficiency of a Dual-Junction Copper Indium Gallium Diselenide Solar Cell

  • Maryam Hedayati
  • Saeed OlyaeeEmail author
  • Seyed Mohamad Bagher Ghorashi
Article
  • 4 Downloads

Abstract

The split of the sunlight spectrum by the bandgap energy of multi-junction solar cells is a highly effective way to increase solar cell efficiency. The reason is that the energy of photons is effectively absorbed, and there is a reduction in solar cell loss. In this contribution, we report on the performance of a double-junction copper gallium diselenide/copper indium gallium diselenide (CGS/CIGS) solar cell with a cadmium sulfide (CdS) buffer layer simulator. The JV characteristics and the external quantum efficiency were simulated under AM1.5 illumination. Increased efficiency was seen as a result of the change in the thickness of layers and different molar ratio amounts of gallium, and the optimal amount of each factor was obtained. In this study, a single CGS solar cell was used as the top cell and a single CIGS solar cell as the bottom cell in the tandem configuration, which showed conversion efficiencies of 16.175% and 15.696%, respectively. Finally, solar cell efficiency of 32.3% was obtained in the double-junction state, an increase of 6% compared with the reference cell.

Keywords

Numerical simulation four-terminal solar cell CGS/CIGS double-junction solar cells efficiency 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    G.J. Lin, J. Bi, M. Song, J. Liu, W. Xiong, and M. Huang, in Optoelectronics—Advanced Materials and Devices, ed. By S.L. Pyshkin, J.M. Ballato, (Intech, 2013), p. 445.Google Scholar
  2. 2.
    N.V. Yastrebova, High-efficiency multi-junction solar cells: current status and future potential. (Centre for Research in Photonics, University of Ottawa, 2007). https://www.semanticscholar.org/paper/High-efficiency-multi-junction-solar-cells-%3A-status-Yastrebova/2a4dce1dd62aba60fb2fe2a8f3f11241b2f325a0. Accessed 9 October 2019.
  3. 3.
    E. Ghahremanirad and S. Olyaee, Photonics 6, 37 (2019).CrossRefGoogle Scholar
  4. 4.
    J. Day, S. Senthilarasu, and T.K. Mallick, Renew. Energy 132, 186 (2019).CrossRefGoogle Scholar
  5. 5.
    A. Luque, J. Appl. Phys. 110, 031301 (2011).CrossRefGoogle Scholar
  6. 6.
    E. Ghahremanirad, S. Olyaee, B.A. Nejand, P. Nazari, V. Ahmadi, and K. Abedi, Sol. Energy 169, 498 (2018).CrossRefGoogle Scholar
  7. 7.
    E. Ghahremanirad, A. Bou, S. Olyaee, and J. Bisquert, J. Phys. Chem. Lett. 8, 1402 (2017).CrossRefGoogle Scholar
  8. 8.
    E. Ghahremanirad, S. Olyaee, B.A. Nejand, V. Ahmadi, and K. Abedi, Phys. Status Solidi B 255, 1700291 (2018).CrossRefGoogle Scholar
  9. 9.
    S. Olyaee and F. Farhadipour, Opt. Appl. 48, 633 (2018).Google Scholar
  10. 10.
    W. Witte, R. Kniese, and M. Powalla, Thin Solid Films 517, 867 (2008).CrossRefGoogle Scholar
  11. 11.
    P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovol. Res. Appl. 19, 894 (2011).CrossRefGoogle Scholar
  12. 12.
    M. Edoff, Ambio 41, 112 (2012).CrossRefGoogle Scholar
  13. 13.
    I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, and R. Noufi, Prog. Photovol. Res. Appl. 16, 235 (2008).CrossRefGoogle Scholar
  14. 14.
    W. Shockley and H.J. Queisser, J. Appl. Phys. 32, 510 (1961).CrossRefGoogle Scholar
  15. 15.
    M.A. Green, Prog. Photovolt. Res. Appl. 9, 123 (2001).CrossRefGoogle Scholar
  16. 16.
    G.S. Kinsey, IEEE J. Photovolt. 5, 258 (2014).CrossRefGoogle Scholar
  17. 17.
    H. Cotal, C. Fetzer, J. Boisvert, G. Kinsey, R. King, P. Hebert, H. Yoon, and N. Karam, Energy Environ. Sci. 2, 174 (2009).CrossRefGoogle Scholar
  18. 18.
    S.M. Sze and K.K. Ng, Physics of Semiconductor Devices, 3rd ed. (New York: Wiley, 2006).CrossRefGoogle Scholar
  19. 19.
    R.N. Hall, Phys. Rev. 87, 387 (1952).CrossRefGoogle Scholar
  20. 20.
    J. Slotboom and H. De Graaff, Solid State Electron. 19, 857 (1976).CrossRefGoogle Scholar
  21. 21.
    M. Gloeckler, A. Fahrenbruch, and J. Sites, in 3rd World Conference on Photovoltaic Energy Conversion (2003), pp. 491–494.Google Scholar
  22. 22.
    J. Song, S.S. Li, C. Huang, O. Crisalle, and T. Anderson, Solid State Electron. 48, 73 (2004).CrossRefGoogle Scholar
  23. 23.
    C.-H. Huang, J. Phys. Chem. Solids 69, 330 (2008).CrossRefGoogle Scholar
  24. 24.
    M.B. Hosen, A.N. Bahar, M.K. Ali, and M. Asaduzzaman, Data Brief. 14, 246 (2017).CrossRefGoogle Scholar
  25. 25.
    X. Shang, Z. Wang, M. Li, L. Zhang, J. Fang, J. Tai, and Y. He, Thin Solid Films 550, 649 (2014).CrossRefGoogle Scholar
  26. 26.
    N. Jankovic, Microelectron. Reliab. 52, 2537 (2012).CrossRefGoogle Scholar
  27. 27.
    M. Elbar, S. Tobbeche, and A. Merazga, Sol. Energy 122, 104 (2015).CrossRefGoogle Scholar
  28. 28.
    S. Ouédraogo, F. Zougmoré, and J. Ndjaka, J. Phys. Chem. Solids 75, 688 (2014).CrossRefGoogle Scholar
  29. 29.
    W. Shockley and W. Read Jr, Phys. Rev. 87, 835 (1952).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.Nano-photonics and Optoelectronics Research Laboratory (NORLab), Faculty of Electrical EngineeringShahid Rajaee Teacher Training University (SRTTU)Lavizan, TehranIran
  2. 2.Atomic and Molecular Group, Faculty of PhysicsUniversity of KashanKashanIran

Personalised recommendations