Advertisement

Preparation and Microwave Absorption Properties of Melt-Spun Nd2Co17 Alloys with Different Post-Treatment Processes

  • Xin Gao
  • Guozhi XieEmail author
  • Ningyan Xie
  • Lingli Zhao
  • Xueying Zhang
  • Li Yang
  • Jing Chen
Article
  • 9 Downloads

Abstract

Nd2Co17 alloy particles were prepared by melt-spinning and high-energy ball-milling techniques. Vacuum heat treatment or crushing was added during the fabrication period to obtain absorbing powders. The microstructure and electromagnetic properties of the absorbing powders were studied. The electromagnetic parameters were investigated using an Agilent vector network analyzer. The size and thickness of the crushed alloy powders was distinctly decreased compared with that of the uncrushed sample. The reduced size and thickness of alloy powers can significantly enhance electromagnetic matching for absorbing powders. Consequently, the microwave absorption properties of the crushed alloys were significantly improved. The reflection loss (RL), which is based on transmission line theory, shows that the vacuum heat treatment sample had an RL peak in the C-band. However, the crushed sample had an RL peak between the C-band and the X-band. The minimum RL value of −8.1 dB was obtained at 8.2 GHz for the crushed Nd2Co17 alloy, and the absorption bandwidth at less than −5 dB reached 9.4 GHz. In contrast, the RL peak of the Nd2Co17 alloys without post-treatment was located in the S-band. These results prove that proper post-treatment is the key to regulating electromagnetic matching, whereby optimal microwave absorption properties of the alloys can be obtained in different bands.

Keywords

Melt-spinning post-treatment microwave absorbing electromagnetic matching 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (Grant No. 11304159), and the Jiangsu Natural Science Foundation of China (BK20161512).

References

  1. 1.
    H.B. Yi, F.S. Wen, L. Qiao, and F.S. Li, J. Appl. Phys. 106, 103922 (2009).CrossRefGoogle Scholar
  2. 2.
    S. Geetha, K.K. Satheesh Kumar, C.R.K. Rao, M. Vijayan, and D.C. Trivedi, J. Appl. Polym. Sci. 112, 2073 (2009).CrossRefGoogle Scholar
  3. 3.
    G.Z. Shen, Y.W. Xu, B. Liu, P. Du, Y. Li, J. Zhu, and D. Zhang, J. Alloys Compd. 680, 553 (2016).CrossRefGoogle Scholar
  4. 4.
    C.K. Zhang, J.J. Jiang, S.W. Bie, L. Zhang, L. Miao, and X.X. Xu, J. Alloys Compd. 527, 71 (2012).CrossRefGoogle Scholar
  5. 5.
    T. Liu, P.H. Zhou, J.L. Xie, and L.J. Deng, J. Appl. Phys. 110, 033918 (2011).CrossRefGoogle Scholar
  6. 6.
    S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.A. Vasilenkov, O.S. Volkova, and A. Shakin, J. Magn. Magn. Mater. 398, 49 (2016).CrossRefGoogle Scholar
  7. 7.
    A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, and E.L. Trukhanova, J. Magn. Magn. Mater. 443, 142 (2017).CrossRefGoogle Scholar
  8. 8.
    T.I. Zubar, S.A. Sharko, D.I. Tishkevich, N.N. Kovaleva, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, L.V. Panina, S.V. Trukhanov, and A.V. Trukhanov, J. Alloys Compd. 748, 970 (2018).CrossRefGoogle Scholar
  9. 9.
    T.I. Zubar, V.M. Fedosyuk, A.V. Trukhanov, N.N. Kovaleva, K.A. Astapovich, D.A. Vinnik, E.L. Trukhanova, A.L. Kozlovskiy, M.V. Zdorovets, A.A. Solobai, D.I. Tishkevich, and S.V. Trukhanov, J. Electrochem. Soc. 166, D173 (2019).CrossRefGoogle Scholar
  10. 10.
    C.K. He, S.K. Pan, L.C. Cheng, X. Liu, and Y.J. Wu, J. Rare Earth 33, 271 (2015).CrossRefGoogle Scholar
  11. 11.
    Y. Zare, M.H. Shams, and M. Jazirehpour, J. Alloys Compd. 717, 294 (2017).CrossRefGoogle Scholar
  12. 12.
    N. Chen, J.T. Jiang, Y. Yuan, C. Liu, C.Y. Xu, and L. Zhen, J. Magn. Magn. Mater. 421, 368 (2017).CrossRefGoogle Scholar
  13. 13.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.A. Turchenko, and M. Salem, Chin. Phys. B 25, 016102 (2016).CrossRefGoogle Scholar
  14. 14.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.A. Turchenko, I.S. Kazakevich, A.V. Trukhanov, E.L. Trukhanova, V.O. Natarov, and A.M. Balagurov, J. Magn. Magn. Mater. 426, 554 (2017).CrossRefGoogle Scholar
  15. 15.
    H.-Y. Yan, V.A. Vorontsov, and D. Dye, Intermetallics 48, 44 (2014).CrossRefGoogle Scholar
  16. 16.
    V. Turchenko, A. Trukhanov, S. Trukhanov, M. Balasoiu, and N. Lupu, J. Magn. Magn. Mater. 477, 9 (2019).CrossRefGoogle Scholar
  17. 17.
    A.V. Trukhanov, M.A. Darwish, L.V. Panina, A.T. Morchenko, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, E.L. Trukhanova, K.A. Astapovich, A.L. Kozlovskiy, M. Zdorovets, and S.V. Trukhanov, J. Alloys Compd. 791, 522 (2019).CrossRefGoogle Scholar
  18. 18.
    Z.Q. Qiao, S.K. Pan, J.L. Xiong, L.C. Cheng, Q.R. Yao, and P.H. Lin, J. Magn. Magn. Mater. 423, 197 (2017).CrossRefGoogle Scholar
  19. 19.
    H. Wang, G.Z. Xie, N.Y. Xie, L.J. Ye, J.W. Chen, and J. Chen, J. Mater. Sci. 30, 401 (2019).Google Scholar
  20. 20.
    Z.Y. Zhang, X.X. Liu, X.J. Wang, Y.P. Wu, and R. Li, J. Alloys Compd. 525, 114 (2012).CrossRefGoogle Scholar
  21. 21.
    L.X. Wang, J. Song, Q.T. Zhang, X.G. Huang, and N.C. Xu, J. Alloys Compd. 481, 863 (2009).CrossRefGoogle Scholar
  22. 22.
    J.L. Snoek, Nature 160, 90 (1947).CrossRefGoogle Scholar
  23. 23.
    W.F. Yang, L. Qiao, J.Q. Wei, Z.Q. Zhang, T. Wang, and F.S. Li, J. Appl. Phys. 107, 033913 (2010).CrossRefGoogle Scholar
  24. 24.
    J.H. He, W. Wang, A.M. Wang, and J.G. Guan, J. Magn. Magn. Mater. 324, 2902 (2012).CrossRefGoogle Scholar
  25. 25.
    G.Z. Xie, X.L. Song, B.S. Zhang, D.M. Tang, Q. Bian, and H.X. Lu, Powder Technol. 210, 220 (2011).CrossRefGoogle Scholar
  26. 26.
    J. Li, G.Z. Xie, P.C. Ji, J. Qu, J.W. Chen, and J. Chen, J. Magn. Magn. Mater. 443, 85 (2017).CrossRefGoogle Scholar
  27. 27.
    S. Ohnuma, H.J. Lee, N. Kobayashi, H. Fujimori, and T. Masumoto, IEEE Trans. Magn. 37, 2251 (2001).CrossRefGoogle Scholar
  28. 28.
    A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, P. Thakur, A. Thakur, Y. Yang, D.A. Vinnik, E.S. Yakovenko, LYu Matzui, E.L. Trukhanova, and S.V. Trukhanov, J. Alloys Compd. 754, 247 (2018).CrossRefGoogle Scholar
  29. 29.
    A.V. Trukhanov, S.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V.V. Korovushkin, V.A. Turchenko, D.A. Vinnik, E.S. Yakovenko, V.V. Zagorodnii, V.L. Launetz, V.V. Oliynyk, T.I. Zubar, D.I. Tishkevich, and E.L. Trukhanova, J. Magn. Magn. Mater. 462, 127 (2018).CrossRefGoogle Scholar
  30. 30.
    A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, LYu Macuy, and E.L. Trukhanov, Ceram. Int. 44, 13520 (2018).CrossRefGoogle Scholar
  31. 31.
    S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, and H. Szymczak, JETP 95, 308 (2002).CrossRefGoogle Scholar
  32. 32.
    S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov, I.M. Fita, A.N. Vasil’ev, A. Maignan, and H. Szymczak, JETP Lett. 83, 33 (2006).CrossRefGoogle Scholar
  33. 33.
    T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, and K. Inomata, J. Magn. Magn. Mater. 281, 195 (2004).CrossRefGoogle Scholar
  34. 34.
    M. Itoh, K. Nishiyama, F. Shogano, T. Murota, K. Yamamoto, M. Sasada, and K. Machida, J. Alloys Compd. 451, 507 (2008).CrossRefGoogle Scholar
  35. 35.
    L.J. Deng, P.H. Zhou, J.L. Xie, and L. Zhang, J. Appl. Phys. 101, 103916 (2007).CrossRefGoogle Scholar
  36. 36.
    Z. Ma, Q.F. Liu, J. Yuan, Z.K. Wang, C.T. Cao, and J.B. Wang, Phys. Status Solidi B 249, 575 (2012).CrossRefGoogle Scholar
  37. 37.
    X.Q. Shen, F.Z. Song, J. Xiang, M.Q. Liu, Y.W. Zhu, and Y.D. Wang, J. Am. Ceram. Soc. 95, 3863 (2012).CrossRefGoogle Scholar
  38. 38.
    Y.B. Feng and T. Qiu, J. Magn. Magn. Mater. 324, 2528 (2012).CrossRefGoogle Scholar
  39. 39.
    G. Li, G.G. Hu, H.D. Zhou, X.J. Fan, and X.G. Li, Mater. Chem. Phys. 75, 101 (2002).CrossRefGoogle Scholar
  40. 40.
    Z.L. Zhang, Z.J. Ji, Y.P. Duan, S.C. Gu, and J.B. Guo, J. Mater. Sci. 24, 968 (2013).Google Scholar
  41. 41.
    F.B. Meng, H.G. Wang, F. Huang, Y.F. Guo, Z.Y. Wang, D. Hui, and Z.W. Zhou, Compos. Part. B 137, 260 (2018).CrossRefGoogle Scholar
  42. 42.
    Q.M. Su, G. Zhong, J. Li, G.H. Du, and B.S. Xu, Appl. Phys. A 106, 59 (2012).CrossRefGoogle Scholar
  43. 43.
    B.S. Zhang, G. Lu, Y. Feng, J. Xiong, and H.X. Lu, J. Magn. Magn. Mater. 299, 205 (2006).CrossRefGoogle Scholar
  44. 44.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, V.V. Oleynik, O.S. Yakovenko, L.Y. Matzui, and D.A. Vinnik, J. Magn. Magn. Mater. 442, 300 (2017).CrossRefGoogle Scholar
  45. 45.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, and L.Y. Matzui, Dalton Trans. 46, 9010 (2017).CrossRefGoogle Scholar
  46. 46.
    S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, A.V. Trukhanov, V.A. Turchenko, D.I. Tishkevich, E.L. Trukhanova, O.S. Yakovenko, L.Y. Matzui, D.A. Vinnik, and D.V. Karpinsky, J. Phys. Chem. Sol. 111, 142 (2017).CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society 2019

Authors and Affiliations

  1. 1.College of Electronic and Optical Engineering & College of MicroelectronicsNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China
  2. 2.College of Telecommunications and Information EngineeringNanjing University of Posts and TelecommunicationsNanjingPeople’s Republic of China

Personalised recommendations