Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Catalyst-Free Growth of MoS2 Nanorods Synthesized by Dual Pulsed Laser-Assisted Chemical Vapor Deposition and Their Structural, Optical and Electrical Properties

  • 18 Accesses

Abstract

Molybdenum disulfide (MoS2) nanorods (NRs) were synthesized from bulk MoS2 using laser-assisted chemical vapor deposition. A q-switched Nd:YAG laser with combined beam wavelengths of 1064 nm and 532 nm was used to ablate a solid MoS2 target. A vapor–solid process at a furnace temperature of 1000°C was found to support the growth of MoS2 NRs without the need for any metal catalyst. Powder x-ray diffraction analysis (PXRD), field emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, and ultraviolet–visible (UV–Vis) and photoluminescence (PL) spectroscopy were used to characterize the structural and optical properties of MoS2 NRs. The PXRD revealed the crystallinity and phase purity of the as-synthesized NRs, while electron microscopy showed that MoS2 NRs had lengths in the range of 0.5–1.2 μm and widths between 40 nm and 160 nm. UV–Vis absorption spectra exhibited broad absorption, and PL measurements showed a sharp emission peak at 379 nm. Tauc plot calculations determined that the MoS2 NRs showed a direct transition. The electrical conductivity of the NRs was found to be 317.95 S/cm. In comparison with the MoS2 nanoparticles, the MoS2 NRs showed higher conductivity due to the in-plane electron transport, which is higher in NRs.

Graphic Abstract

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Iijima, Nature 354, 56 (1991).

  2. 2.

    A. Dalui, A.H. Khan, B. Pradhan, S. Ghosh, and S. Acharya, Materials Nanoarchitectonics, ed. K. Ariga and M. Ebara (Weinheim: Wiley, 2018), p. 33.

  3. 3.

    J.Y. Cheng, F. Zhang, V.P. Chuang, A.M. Mayes, and C.A. Ross, Nano Lett. 6, 2099 (2006).

  4. 4.

    J. Weber, R. Singhal, S. Zekri, and A. Kumar, Int. Mater. Rev. 53, 235 (2008).

  5. 5.

    S. Ichi Sawada and N. Hamada, Solid State Commun. 83, 917 (1992).

  6. 6.

    N. Hamada, Mater. Sci. Eng. B 19, 181 (1993).

  7. 7.

    H. Gao, F. Hou, X. Zheng, J. Liu, A. Guo, D. Yang, and Y. Gong, Vacuum 112, 1 (2015).

  8. 8.

    M.A. Siddiqui, R. Wahab, J. Ahmad, N.N. Farshori, J. Musarrat, and A.A. Al-Khedhairy, Vacuum 146, 578 (2017).

  9. 9.

    L. Cao, MRS Bull. 40, 592 (2015).

  10. 10.

    Z. Hu, Z. Wu, C. Han, J. He, Z. Ni, and W. Chen, Chem. Soc. Rev. 47, 3100 (2018).

  11. 11.

    H. Wang, S.M. Ng, H.F. Wong, W.C. Wong, K.K. Lam, Y.K. Liu, L.F. Fei, Y.B. Zhou, C.L. Mak, Y. Wang, and C.W. Leung, Vacuum 152, 239 (2018).

  12. 12.

    X. Gao, M. Hu, J. Sun, Y. Fu, J. Yang, W. Liu, and L. Weng, Vacuum 144, 72 (2017).

  13. 13.

    K. Ojha, S. Saha, S. Banerjee, and A.K. Ganguli, Appl. Mater. Interfaces 9, 19455 (2017).

  14. 14.

    S.Y. Kim, S. Park, and W. Choi, Appl. Phys. A 117, 761 (2014).

  15. 15.

    J.H. An and J. Jang, Nanoscale 9, 7483 (2017).

  16. 16.

    B.K. Miremadi, R.C. Singh, S.R. Morrison, and K. Colbow, Appl. Phys. A 63, 271 (1996).

  17. 17.

    S.S. Karade, D.P. Dubal, and B.R. Sankapal, RSC Adv. 6, 39159 (2016).

  18. 18.

    Z. Li, X. Meng, and Z. Zhang, J. Photochem. Photobiol. C Photochem. Rev. 35, 39 (2018).

  19. 19.

    G. Tang, J. Zhang, C. Liu, D. Zhang, Y. Wang, H. Tang, and C. Li, Ceram. Int. 40, 11575 (2014).

  20. 20.

    Y. Chen, X. Wang, P. Wang, H. Huang, G. Wu, B. Tian, Z. Hong, Y. Wang, S. Sun, H. Shen, J. Wang, W. Hu, J. Sun, X. Meng, and J. Chu, ACS Appl. Mater. Interfaces 8, 32083 (2016).

  21. 21.

    U. Dasgupta, S. Chatterjee, and A.J. Pal, Sol. Energy Mater. Sol. Cells 172, 353 (2017).

  22. 22.

    X. Xiong, W. Luo, X. Hu, C. Chen, L. Qie, D. Hou, and Y. Huang, Sci. Rep. 5, 9254 (2015).

  23. 23.

    L. Hao, Y. Liu, W. Gao, Z. Han, Q. Xue, H. Zeng, Z. Wu, J. Zhu, and W. Zhang, J. Appl. Phys. 117, 114502 (2015).

  24. 24.

    M.A. Albiter, R. Huirache-Acuña, F. Paraguay-Delgado, J.L. Rico, and G. Alonso-Nuñez, Nanotechnology. 17, 3473 (2006).

  25. 25.

    P. Joensen, R.F. Frindt, and S.R. Morrison, Mater. Res. Bull. 21, 457 (1986).

  26. 26.

    Y. Li, Y. Li, C.M. Araujo, W. Luo, and R. Ahuja, Catal. Sci. Technol. 3, 2214 (2013).

  27. 27.

    T. Chu, H. Ilatikhameneh, G. Klimeck, R. Rahman, and Z. Chen, Nano Lett. 15, 8000 (2015).

  28. 28.

    D. Lembke, S. Bertolazzi, and A. Kis, Acc. Chem. Res. 48, 100 (2015).

  29. 29.

    H. Yu, X. Yu, Y. Chen, S. Zhang, P. Gao, and C. Li, Nanoscale 7, 8731 (2015).

  30. 30.

    X. Kong, X. Shen, C. Zhang, S.N. Oliaee, and Z. Peng, Inorg. Chem. Front. 3, 1376 (2016).

  31. 31.

    Y. Jiang, D. Wang, J. Li, M. Li, Z. Pan, H. Ma, G. Lv, W. Qu, L. Wang, and Z. Tian, Catal. Sci. Technol. 7, 2998 (2017).

  32. 32.

    T.-H. Su, C.-L. Wu, H.-C. Chang, and Y.-J. Lin, J. Mater. Sci. Mater. Electron. 29, 351 (2018).

  33. 33.

    V. Mlinar, Phys. Chem. Chem. Phys. 19, 15891 (2017).

  34. 34.

    S. Han, C. Yuan, X. Luo, Y. Cao, T. Yu, Y. Yang, Q. Li, and S. Ye, RSC Adv. 5, 68283 (2015).

  35. 35.

    Y. Tian, Y. He, and Y. Zhu, Mater. Chem. Phys. 87, 87–90 (2004).

  36. 36.

    N. Li, G. Lee, Y.H. Jeong, and K.S. Kim, J. Phys. Chem. C 119, 6405 (2015).

  37. 37.

    P. Thangasamy and M. Sathish, Rapid. J. Mater. Chem. C. 4, 1165 (2016).

  38. 38.

    S. Liu, X. Zhang, H. Shao, J. Xu, F. Chen, and Y. Feng, Mater. Lett. 73, 223 (2012).

  39. 39.

    F.L. Deepak, A. Mayoral, A.J. Steveson, S. Mejía-Rosales, D.A. Blom, and M. José-Yacamán, Nanoscale 2, 2286 (2010).

  40. 40.

    M. Remskar, A. Mrzel, M. Virsek, M. Godec, M. Krause, A. Kolitsch, A. Singh, and A. Seabaugh, Nanoscale Res. Lett. 6, 1 (2011).

  41. 41.

    C.M. Zelenski and P.K. Dorhout, J. Am. Chem. Soc. 120, 734 (1998).

  42. 42.

    E.M. Rivera-Mũoz, J. Appl. Phys. 102, 1 (2007).

  43. 43.

    M. Remskar, A. Mrzel, Z. Skraba, A. Jesih, M. Ceh, J. Demšar, P. Stadelmann, F. Lévy, and D. Mihailovic, Science 292, 479 (2001).

  44. 44.

    H.A. Therese, N. Zink, U. Kolb, and W. Tremel, Solid State Sci. 8, 1133 (2006).

  45. 45.

    V. Lavayen, N. Mirabal, C. O’Dwyer, M.A. Santa Ana, E. Benavente, C.M. Sotomayor Torres, and G. González, Appl. Surf. Sci. 253, 5185 (2007).

  46. 46.

    S.J. Sandoval, D. Yang, R.F. Frindt, and J.C. Irwin, Phys. Rev. B. 44, 3955 (1991).

  47. 47.

    S.V.P. Vattikuti and C. Byon, J. Nanomater. 2015, 1 (2015).

  48. 48.

    S. Mukherjee, R. Maiti, A. Midya, S. Das, and S. Ray, ACS Photon. 2, 760 (2015).

  49. 49.

    R. Kumar, N. Goel, and M. Kumar, Appl. Phys. Lett. 112, 053502 (2018).

  50. 50.

    C. Zhang, Z. Wang, Z. Guo, X.W. Lou, and A.C.S. Appl, Mater. Interfaces 4, 3765 (2012).

  51. 51.

    Y. Tian, J. Zhao, W. Fu, Y. Liu, Y. Zhu, and Z. Wang, Mater. Lett. 59, 3452 (2005).

  52. 52.

    H. Lin, X. Chen, H. Li, M. Yang, and Y. Qi, Mater. Lett. 64, 1748 (2010).

  53. 53.

    S. Han, X. Luo, Y. Cao, C. Yuan, Y. Yang, Q. Li, T. Yu, and S. Ye, J. Cryst. Growth 430, 1 (2015).

  54. 54.

    C. Zhang, H. Bin Wu, Z. Guo, and X.W. Lou, Electrochem. Commun. 20, 7 (2012).

  55. 55.

    P. Paiva, F. Madelino, and O. Conde, J. Lumin. 80, 141 (1998).

  56. 56.

    C. Zhang, J. Zhang, K. Lin, and Y. Huang, Rev. Sci. Instrum. 88, 053907 (2017).

  57. 57.

    X. Zheng, L. Zhu, A. Yan, C. Bai, and Y. Xie, Ultrason. Sonochem. 11, 83 (2004).

  58. 58.

    S. Reshmi, M.V. Akshaya, B. Satpati, A. Roy, P. Kumar Basu, and K. Bhattacharjee, Mater. Res. Express 4, 115012 (2017).

  59. 59.

    D. Wei, J.I. Mitchell, C. Tansarawiput, W. Nam, M. Qi, P.D. Ye, and X. Xu, Carbon 53, 374 (2013).

  60. 60.

    S.N. Bondi, W.J. Lackey, R.W. Johnson, X. Wang, and Z.L. Wang, Carbon 44, 1393 (2006).

  61. 61.

    M.K. Moodley, Thesis, Univ. TheWitwatersrand. (2010).

  62. 62.

    M.K. Moodley and N.J. Coville, Chem. Phys. Lett. 498, 140 (2010).

  63. 63.

    H. Guo, Y. Sun, P. Zhai, H. Yao, J. Zeng, S. Zhang, J. Duan, M. Hou, M. Khan, and J. Liu, Appl. Phys. A 375, 1 (2016).

  64. 64.

    D.E. Motaung, M.K. Moodley, E. Manikandan, and N.J. Coville, J. Appl. Phys. 107, 044308 (2010).

  65. 65.

    S.J. Panchu, S. Dhani, A. Chuturgoon, and M.K. Moodley, J. Photochem. Photobiol. B Biol. 187, 10 (2018).

  66. 66.

    K. Gołasa, M. Grzeszczyk, K.P. Korona, R. Bożek, J. Binder, J. Szczytko, A. Wysmołek, and A. Babiński, Acta Phys. Pol. A 124, 849 (2013).

  67. 67.

    M. Ye, D. Winslow, D. Zhang, R. Pandey, and Y. Yap, Photonics 2, 288 (2015).

  68. 68.

    M. Mohan, K.N.N. Unni, and R.B. Rakhi, Vacuum 166, 335 (2019).

  69. 69.

    H. Wu, R. Yang, B. Song, Q. Han, J. Li, Y. Zhang, Y. Fang, R. Tenne, and C. Wang, ACS Nano 5, 1276 (2011).

  70. 70.

    H. Dong, D. Chen, K. Wang, and R. Zhang, Nanoscale Res. Lett. 11, 1 (2016).

  71. 71.

    B. Gao and X. Zhang, S. Afr. J. Chem. 67, 6 (2014).

  72. 72.

    C.K. Tan, W.C. Wong, S.M. Ng, H.F. Wong, C.W. Leung, and C.L. Mak, Vacuum 153, 274 (2018).

  73. 73.

    M.R. Gao, M.K.Y. Chan, and Y. Sun, Nat. Commun. 6, 7493 (2015).

  74. 74.

    H. Lu, A. Kummel, and J. Robertson, APL Mater. 6, 066104 (2018).

  75. 75.

    J. Bruncko, M. Netrvalova, A. Vincze, P. Šutta, M. Michalka, and F. Uherek, Vacuum 98, 56 (2013).

  76. 76.

    S.V.P. Vattikuti, C. Byon, C.V. Reddy, J. Shim, and B. Venkatesh, Appl. Phys. A Mater. Sci. Process. 119, 813 (2015).

  77. 77.

    P. Liu, Y. Liu, W. Ye, J. Ma, and D. Gao, Nanotechnology. 27, 225403 (2016).

  78. 78.

    J.P. Wilcoxon, P.P. Newcomer, and G.A. Samara, J. Appl. Phys. 81, 7934 (1997).

  79. 79.

    R. Coehoorn, C. Haas, J. Dijkstra, C.J.F. Flipse, R.A. de Groot, and A. Wold, Phys. Rev. B 35, 6195 (1987).

  80. 80.

    A.M. Panich, A.I. Shames, R. Rosentsveig, and R. Tenne, J. Phys. Condens. Matter 21, 395301 (2009).

  81. 81.

    X. Ren, L. Pang, Y. Zhang, X. Ren, H. Fan, and S. Liu, J. Mater. Chem. A 3, 10693 (2015).

  82. 82.

    F. Zahid, L. Liu, Y. Zhu, J. Wang, and H. Guo, AIP Adv. 3, 052111 (2013).

  83. 83.

    M.D. Siao, W.C. Shen, R.S. Chen, Z.W. Chang, M.C. Shih, Y.P. Chiu, and C.M. Cheng, Nat. Commun. 9, 1 (2018).

Download references

Acknowledgments

Miss Sarojini Jeeva Panchu is grateful to the University of KwaZulu-Natal, the National Research Foundation (NRF) South Africa for the Free-Standing Doctoral Grant (Grant UID: 112896). The Microscopy and Microanalysis Unit (MMU) is a service facility at the University of KwaZulu-Natal.

Author information

Correspondence to Mathew K. Moodley.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Panchu, S.J., Adebisi, M.A., Manikandan, E. et al. Catalyst-Free Growth of MoS2 Nanorods Synthesized by Dual Pulsed Laser-Assisted Chemical Vapor Deposition and Their Structural, Optical and Electrical Properties. Journal of Elec Materi 49, 1957–1968 (2020). https://doi.org/10.1007/s11664-019-07817-z

Download citation

Keywords

  • MoS2
  • nanorods
  • electron microscopy
  • LACVD
  • optical studies
  • conductivity